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APPENDIX I 

EQUALITY AND THE BENTHAMITE SOCIAL 
WELFARE FUNCTION 

In this appendix we explain the reason why utility levels differ between different 

locations at the Benthamite optimum.  The basic reason is that the utility possibility 

frontier is skewed in favour of households living farther from the center.  This can be 

illustrated by considering a rectangular city consisting only of two households.  For 
notational simplicity, the width of the city is assumed to be 1, i.e., 1)( =xθ .  
Household i consumes iz  of the consumer good and ih  of space.  Both households 

are assumed to commute to the center of the city from the center of their properties, i.e., 

commuting costs of household 1 and 2 are respectively )
2
1

( 1ht  and )
2
1

( 21 hht + , 

where household 1 lives closer to the center.  This city is illustrated in Figure 1. 

 

 

 

The resource constraint for the city is given by 
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Given the resource constraint, we can obtain the set of feasible utility levels of the 

two households. The frontier of the set is called the utility possibility frontier and 
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depicted by the curve LL' in Figure 2.  The utility possibility frontier expresses the 

maximum utility that household 1 can achieve at every possible utility level for 
household 2.  It is obtained by maximizing 1u , subject to the resource constraint and 

to 
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The Lagrangian is therefore 
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The first order conditions can be summarized as 

 .
),(

)
2
1

()
2
1

(

2
1

),(

),(

),(

),(

22

211

22

11

22

11

hzu

hhtht

hzu

hzu

hzu

hzu

hh

h

z

z
+′+′

−== δλ         (4) 

Now it can be shown that the utility possibility frontier; is skewed as in Figure 2, 
so that its slope is flatter than minus 1 when the two households obtain the same utility 

level. 

By the Envelope Theorem in Appendix III, the slope of the utility possibility 

frontier is 
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Since the last term on the RHS of (4) is negative, we have 
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Thus the slope of an indifference curve is steeper at ),( 11 hz  than at ),( 22 hz .  Due to 

the convexity of indifference curves, this implies, as shown in Figure 3, that 21 zz >  
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and 21 hh >  if 21 uu = . But if land is a normal good, the following inequality is 

obtained from (I.2.7) and (I.2.8):  
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Hence, zu  decreases as z increases along an indifference curve and we finally 

obtain 
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As the simple sum of utilities is maximized in the Benthamite case, the Benthamite 
optimum is point A in Figure 2 at which the 45° line 1I  is tangent to the utility 

possibility frontier.  Since the utility possibility frontier is flatter than 45° when 
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utility levels are equal, the optimum must lie below the equal-utility line 00’.1  Thus 
household 2 receives a higher utility level than household 1. 

 

This result generalizes to any smooth symmetric quasiconcave social welfare 
function, ),( 21 uuW , represented by indifference curves like 2I  since all indifference 

curves of a smooth symmetric social welfare function must have slope -1 along the 
equal-utility line 00'.  A symmetric quasi-concave social welfare function yields equal 
utility levels only if indifference curves have kinks along the 45° line, as 3I  does. 

One example is the Rawlsian case represented by 4I . 

The skewed utility possibility frontier is a result of the so-called concealed 

nonconvexity.  In our model, it is assumed that a household must choose only one 
location and cannot live at more than one location at a time.  This assumption can be 

interpreted in two ways.  First, it may be considered as a restriction on the 

consumption set.  For example, in Figure 4, which describes housing consumptions at 

two locations x and x', the consumption set is limited to the two axes, and any point 

within the first quadrangle cannot be chosen. In this case, the consumption set is not 
obviously convex.  Second, the assumption may be a consequence of nonconvex 

preferences.  If indifference curves are concave to the  origin as in the Figure 4, a 

household, given a linear budget constraint, always chooses one of the corners. 

                                                 

1 It is implicitly assumed that the utility possibility set is convex.  This is true if the transportation cost 

function is convex and the utility function is concave. 
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Figure 4.  Concealed Nonconvexity 

In our model, this nonconvexity is not harmful for the existence and efficiency of 

competitive equilibrium, since enough smoothness is obtained by introducing a 
population density function.  The crucial assumption is that the population density at 

each distance can be any real number.  This is not true in a model with several regions 

in which the population in each region must be an integer.  In such a case demand for 

land in one region is discontinuous at the price level where an individual moves in or 

out of the region.  Hence, there may never be a price vector that equilibriate the market 
for land.  If, however, the population in a region can be any real number, such 

discontinuity will not occur and the existence of competitive equilibrium will be 

guaranteed.  Schweizer, Varaiya and Hartwick (1976) proved that competitive 

equilibrium exists in a model with the concealed nonconvexity if a population density 

can be any real number. 

This result is analogous to the well-known result in general equilibrium theory 

(due to Star (1969) and others) that nonexistence of equilibrium caused by 

nonconvexities of individual units disappears as the economy becomes larger relative to 

individual economic units.  In particular, it is parallel to the work of Aumann (1966) 

which shows that in a model with a continuum of households, each of infinitesimal 
endowment, the existence of competitive equilibrium can be proven without making 

any assumption about convexity. 

Although the nonconvexity does not introduce any difficulty concerning the 

existence and efficiency of competitive equilibrium, it causes inequality in utility levels. 

The asymmetry in the utility possibility frontier arises since housed holds living near 
the center, for example, are not allowed an access to land in the suburbs.  In such a 
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case, households living at different locations face different opportunity sets.  If, 

however, households can live at more than one location, they all face exactly the same 

budget constraint and there is no difference between households.  The utility 

possibility frontier is then symmetric and all households receive the same utility level at 

the Benthamite optimum. 

Some economists prefer the Benthamite case on the grounds that the Rawlsian 

social welfare function must be assumed to obtain the equal-utility optimum.  As can 

be seen from Fig. 2 however, this claim is not true.  Utility leve ls are equal at the 

optimum if the social welfare indifference curves have sufficiently strong kinks along 

the equal-utility line. 

Any symmetric indifference curve with no kinks has a slope -1 along the equal 

utility line.  This implies that in the neighborhood of the equal utility line the social 

welfare function behaves in the same way as the Benthamite social welfare function.  

Thus at least locally the aggregate utility is maximized and the social welfare function 

exhibits no preference for equality of utility levels.  If local preference for equality is 
assumed at the point where utility levels are equal, indifference curves will have kinks 

and utility levels may be equal at the optimum. 
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