Appendix 1V

APPENDIX IV
OPTIMAL CONTROL THEORY

This appendix provides a concise review of optimal control theory. Many
economic problems require the use of optimal control theory. For example,
optimization over time such as maximizations of utility over an individual's life time
and of profit and social welfare of a country over time and optimization over space such
as the ones analyzed in this book fit in its framework.

Although these problems may be solved by the conventional techniques such as
Lagrange's method and nonlinear programming if we formulate the problems in
discrete form by dividing time (or distance) into afinite number of intervals, continuous
time (or space) models are usually more convenient and yield results which are more
transparent. Optimization over continuous time, however, introduces some technical
difficulties. In the continuous time model, the number of choice variables is no longer
finite: since decisions may be taken at each instant of time, there is a continuously
infinite number of choice variables. The rigorous treatment of optimization in an
infinite-dimensional space requires the use of very advanced mathematics.
Fortunately, once proven, the major results are quite smple, and analogous to those in
the optimization in a finite-dimensiona space.

There are three approaches in the optimal control theory: calculus of variations,
the maximum principle and dynamic programming. Calculus of variations is the oldest
among the three and treats only the interior solution. In applications, as it turned out,
choice variables are often bounded, and may jump from one bound to the other in the
interval considered. The maximum principle was developed to include such cases.
Roughly speaking, calculus of variations and the maximum principle are derived by
using some appropriate forms of differentiation in an infinite-dimensional space.
Dynamic programming however, exploits the recursive nature of the problem. Many
problems including those treated by calculus of variations and the maximum principle
have the property that the optimal policy from any arbitrary time on depends only on
the state of the system at that time and does not depend on the paths that the choice
variables have taken up to that time. In such cases the maximum vaue of the
objective function beyond time t can be considered as a function of the state of the
system at timet. This function is called the value function. The value function yields
the value which the best possible performance from t to the end of the interval achieves.
The dynamic programming approach solves the optimization problem by first obtaining
the value function. Although the maximum principle and dynamic programming yield
the same results, where they can both be applied, dynamic programming is less general
than the approach based on the maximum principle, since it requires differentiability of
the value function.

We firgt try to facilitate an intuitive understanding of control theory in section 1.
In order to do so, a very simple control problem is formulated and the necessary
conditions for the optimum are derived heuristically. Following the dynamic
programming approach, Pontryagin's maximum principle is derived from the partial
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differential equation of dynamic programming. As mentioned above, this approach is
not the most general one, but it facilitates economic interpretation of the necessary
conditions. In section 2 the results in section 1 are applied to an example taken from
Chapter VII.  Section 3 considers a more genera form of the control problem (due to
Bolza and Hestenes) and Hestenes theorem, giving the necessary conditions for the
optimum, is stated without proof. This theorem is general enough to include most
problems that appear in this book. Finaly, in section4, Hestenes' theorem is used to
solve the control problemsin Chapter |.

1. A Simple Control Problem

Consider a dynamic process which starts at inital time t, and ends a terminal
time t,. Both t, and t, are taken as given in this section. For simplicity, the
state of the system is described by only one variable, x(t), called the state variable.

In most economic problems the state variable is usually a stock, such as the amounts of
capital equipments and inventories available at time t. In Chapters IV and V of our
book the volume of traffic at aradiusis a state variable.

The state of the system is influenced by the choice of control variables,
u, (t), u,(t),...,u, (t), which are summarized as the control vector,

u(t) = (U (0),u, 0),...u, (©)). (L.1)
The control vector must lie inside a given subset of a Euclideanr-dimensional space, U:
u®i U, toEt £, (1.2)

where U is assumed to be closed and unchanging. Note that control variables are
chosen at each point of time. The rate of investment in capital equipment is one of the
control variables in most models of capital accumulation; the rate of inventory
Investment is a variable in inventory adjustment models;, and the population per unit
distance is a control variable for the models in this book. An entire path of the control
vector, u(t), t,£t£t, is a vector-valued function u(t) from the interva [to,tl]

into the r-dimensional space and is simply called a control. A control is admissible if
it satisfies the constraint (1.2) and some other regularity conditions which will be
specified in section 3.

The state variable moves according to the differential equation
dx _ .
T X(t) = f,(x(t),u(t).1), (13

where f, is assumed to be continuously differentiable. Notice that the function f,,
isnotthesameas f,. Inthissectiontheinitial state, x(t,), isgiven,

X(t,) = %°, (1.4
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where x° is some congtant, but the terminal state, x(t,), is unrestricted. For
example, the capital stock at initial time is fixed; the rate of change of the capital stock

equals the rate of investment minus depreciation; and the capital stock at terminal time
IS not restricted.

The problem to be solved is that of maximizing the objective functional
t
J= Ql fo (X(1), (), t)dt + Sy (X(ty), 1) (1.5)

with respect to the control vector, u(t), t, £t £t;, subject to the constraints (1.2),

(1.3), and (1.4), where f, and S,, the functions which make up the objective

functional are continuously differentiable. A functional is defined as a function of a
function or functions, that is, a mapping from a space of functions to a space of
numbers. In the investment decison problem for a firm, for example,
fo(x(t),u(t),t)dt is the amount of profit earned in the time interval [t,t+dt] and

S (X(t,),t,) isthe scrap value of the amount of capital x(t,) at terminal time t,.
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The problem isillustrated in Figure 1. In Fig.la, apossible trgjectory of the state
variable with the initial value x° is depicted. If the trajectory of the control vector is
specified for the entire time horizon [to,tl], the trgjectory of the state variable is
completely characterized. The value of the state variable at time t and the choice of
the control vector then jointly determine f,(x(t),u(t),t).

In Fig.1b we graph the part of the value of the objective functional which has
been realized at any time t for the particular trgjectory of the control vector f;,
therefore, appears as the dope in Fig.1b, while the value of the objective functional is
the sum of the integral from t, to t,of f,,and S, the scrap value at terminal time.

Our problem is to obtain the trgectory of the control vector that maximizes the
objective functional.

The mgjor difficulty of this problem lies in the fact that an entire time path of the
control vector must be chosen. This amounts to a continuously infinite number of
control variables. In other words, what must be found is not just the optimal numbers
but the optimal functions. The basic idea of control theory is to transform the problem
of choosing the entire optimal path of control variables into the problem of finding the
optimal values of control variables at each instant of time. In this way the problem of
choosing an infinite number of variables is decomposed into an infinite number of more
elementary problems each of which involves determining a finite number of variables.

The objective functional can be broken into three pieces for any time t - apast, a
present and a future - :

J :C‘s fo(X(t)Gu(t)¢t9ate
¥ C‘Sﬂ fo (x(t) Su(t)Gtgaite

+ (im fo(X(t)Gu(t)tdte+ Sy (x(ty). ty).

The decisions taken at any time have two effects. They directly affect the present
term,

J+Dt

Q fo(x(®)Su(t)§t9dtd,

by changing f,. They also change X, and hence the future path of x(t), through

x = f(x(t),u(t),t). The new path of x(t) changes the future part of the functional.
For example, if afirm increases investment at time t, the rate at which profits are earned
a that time falls because the firm must pay for the investment. The investment,
however, increases the amount of capital available in the future and therefore profits
earned in the future. The firm must make investment decisions weighing these two
effects. In general, the choice of the control variables at any instant of time must take
into account both the instantaneous effect on the current earnings f,Dt and the

indirect effect on the future earnings &Dt fodt¢+ S, through a change in the state
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variable. The transformation of the problem is accomplished if a simple way to
represent these two effects is found.

This leads us to the concept of the value function, which might be used by a
planner who wanted to recal culate the optimal policy at timet after the dynamic process
began. Consider the problem of maximizing

O folx(t9, u(td,t9ct &+ Sy(x(t).1y) (16)

when the state variable at time tis X; Xx(t) =x. The maximized vaue is then a
function of x and t:

J* (x1), (1.7)

which is cdled the value function. The optimal value of the objective functiona for
the original problem (1.2)-(1.5) is

I*(x* (@),1) = 3* (x°,tg). (1.8)

The usefulness of the value function must be obvious by now: it facilitates the
characterization of the indirect effect through a change in the state variable by
summarizing the maximum possible value of the objective functional from time t on as
afunction of the state variable at timet (and t).

The next step in the derivation of the necessary conditions for the optimum
involves the celebrated Principle of Optimality due to Bellman.  The principle exploits
the fact that the value of the state variable at time t captures al the necessary
information for the decision making from time t on: the paths of the control vector and
the state variable up to timet do not make any difference as long as the state variable at
timetisthesame. Thisimpliesthat if a planner recal culates the optimal policy at time
t given the optimal value of the state variable at that time, the new optimal policy

coincides with the origina optimal policy. Thusif u*(t),ty£t£t;, is the optimal
control for the aiginal problem and x* (t),t, £t £1;, the corresponding trajectory of
the state variable, the value function satisfies

\t * * *
J* = Ql fo(X* (t,u* (t9,tGdt G+ Sy(x* (t,),t,). (1.9)
Applying the principle of optimality again, we can rewrite (1.9) as

J*(x*(t),1) = (‘5”1 Fo(X* (t9,U* (£, t9iter (‘im £ (¢ (9, U* (9, tgclte
+Sp(x* () 4) (1.10)
= Q”Dt o (X* (9, U* (19, 1§t G+ 3 * (x* (t + D)t + D),

for any t and t+Dt such that ty £t£t+Dt£t;. This construction alows us to
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concentrate on the decisions in the short interval from tto t+ Dt by summarizing the
outcome in the remaining period in the value function, J* (x* (t +Dt),t + Dt) .

By the definition of the value function, any admissible control cannot do better
than the value function if the initial state is the same. Consider the following special

type of control, u(t(), t £ tC£t,: the control is arbitrary between time t and time t+ DX

and optimal in the remaining period given the state reached at time t+Dt. Then the
corresponding value of the objective functional satisfies

I (x* (t),t)z(‘pHDt £, (X(t9, u(t®, t9dtC+ J * (x(t + Dt), t + Dt) (1.11)
where x(t), tE£t(£t,, is the state variable corresponding to the control u(t¢) with
theinitia state x(t) = x* (t) .

Combining (1.10) and (1.11) yields

IO = ¢ folx* (t, u* (t9,t9dter J* (x* (t+ Dt),t +Dt)

) q\;m Fo(X(t9, U(t9, t9dte+ J * (x(t + Dt),t + Dt)

forany u(tQl U t£tEt+Dt.  (1.12)

This shows that the optimal control in the interval [t,t + Dt] maximizes the sum of the

objective functional in the interval and the maximum possible value of the functional in
the rest of the period [t+Dt,t,]. If both sides of the inequality are differentiable,

Taylor's expansion around t yieldst

1 The details of Taylor's expansion here are as follows. Taylor's theorem states that if F(t) is
differentiableat t=a,then

F(t)=F(@)+(t- aF(a)+o(t- a),

where [_IL%]O%=O Noting that
Fo(t+Dt) © 5[" fo(tgdte
satisfies
Fo (1) = fo(0),
we obtain
t+Dt
(‘p fo(X* (tQ,u* (t"),t)dt'+I* (x* (t +Dx),t + Dx)
= fo (x* (t),u™ (1), t)Dt+ 3 * (x* (1), t)
+H[(19 % (x* (1), 1)/ T X* (1) +93 * (x* (t),1) /1] DX + o( DY),
and
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- (3% (x* (t),t)/ t) Dt
= o (* (t),u* (£), D+ (TI* (¢* (£),) /1) 1 (¢* (), u* (1), Dt +...
3£ (X* (t), u(t), )DE+ (3% (X* (t), 1) /%) F,(x* (1), u(t),)Dt+...,

forany u(t)T U, (1.13)

where ... represents higher order terms which become negligible as Dt tends to zero,
since they approach zero faster than Dt . Note that we used x(t)=x*(t) ,

(1) = f,(x(0),ut),yand x* (€)= fL(x* (t),u* (), 1).

Inequality (1.13) has a natural economic interpretation. For example, if afirmis
contemplating the optimal capital accumulation policy, f,(x*(t),u(t),t)Dx , is
approximately the amount of profits earned in the period [t,t + Dt] .
13 * (x* (t),t)/9x is the margina value of capital, or the contribution of an additional
unit of capital at time t; and f;(x* (t),u(t),t)Dt = X(t)Dt is approximately the amount
of capital accumulated in period [t,t+ Dt]. Thus (13*/9x) f,Dt represents the value

of capital accumulated during the period. (1.13), therefore, shows that the optimal
control vector maximizes the sum of the current profits and the value of increased

capital.
Dividing (1.13) by At and taking limits as At approaches zero, we obtain
- fI* (x> (@), 1) /1t
= fo (x* (t),u™ (©),1) + (13 * (x* (£),) /%) fL (x* (1), u™ (1), 1)
3 fo (x* (1), u(), t) + (T * (x* (t),1)/ Tx) f1 (x* (t),u(t),t)

forany u()l U. (L.14)

Thus the optimal control vector u* (t) maximizes
fo (X* (1), u,t) +(TI* (x* (t),t)/ Ix) f(x* (t),u,t) (1.15)
at each instant of time, and we have finaly transformed the problem of finding the
optimal path to that of finding optimal numbers at each point in time. From the above

discussion, it must be clear that (1.15) summarizes both the instantaneous effect and the
indirect effect through a change in the state variable.

(1.14) can be rewritten as

63 Fo(X(E),U(t), ')t +3* (x(t + Dt),t + D)
= fo(x(t),u(t),t)Dt + I * (x(t),t)
+[(T0* (x(t), )/ TOX(t) + 13 * (x(t),t)/9t] Ot +0(DX)
= fo (x* (1),u(t), ) Dt + I * (x* (1), 1)
F[(9* (x* (£),)/TIX(E) + 13 (x* (£),1)/ Dt + o(DY),
wherewe used x(t) = x*(t) . Substituting these two equations into (1.12) yields (1.13).
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- 0+ /9t = maX ey o (X* (0),U,t) + (T3 /91%) fy (x* (1), u,t)] (1.14")

This equation holds for any x, not just x*(t), and can be considered a partial
differential equation of J*(x,t). It is cadled the partial differential equation of
dynamic programming or Bellman's equation.

In the dynamic programming approach, the right side of (1.14") is maximized with

respect to u, yielding the partia differential equation. The partial differential equation
is then solved with the boundary conditions. At the initial time t,, x(t,) = x°, while

at the terminal time t,, the value function satisfies
J*(X(t), 1) = Sp(X(ty). 1) (1.16)

for any x(t,). This equation is the terminal boundary condition associated with
Bellman'sequation.  Since (1.16) holds for any x(t,) , we have

% (x(t1), ) /1% = 1 (X (t1) . t,) /91, (1.17)
which is called the transversality condition at time t, .

One of the disadvantages of the dynamic programming approach is that the partial
differential equation is usually hard to solve. Pontryagin's maximum principle, which
can be immediately derived from the partial differential equation of dynamic
programming, is often more useful for economic applications. Furthermore, the
method of dynamic programming employs the Taylor expansion in (1.13), which
requires that the value function be differentiable. There are many problems for which
the value function is not differentiable everywhere.  The maximum principle, however,
can be proven using a different and more general method.  In this section we derive the
maximum principle from Bellman's equation, and in Section3 we state a more general
version of the maximum principle without proof.

To derive Pontryagin's maximum principle, we define the adjoint, or costate, or
auxiliary, variable,

p(t) =13* (x* (t),1)/ 1%, (1.18)
and rewrite (1.15) as the Hamiltonian,
HIX(®),u(t).t, p)] = £ (x(), u(®).t) + p(t) f,(X(V), u(t), 1) (1.19)

(2.14) now reads. if u*(t) is the optimal control and x* (t) the associated path of
the state variable, then there existsa p(t) such that for any t

H[x* (1), u* (©),t, p(t)] = max ) H[x* (©),u,t, p(t)} (1.20)

Since p(t) equas 9YJ*/9x, the adjoint variable p(t) is the margina value of
the state variable (if, for example, x(t) is capital, p(t) is the margina value of
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capital) and has the interpretation of the shadow priceof x(t).

(1.14") aso contains information about the adjoint variable. We can rewrite
(1.14") asthe Hamilton-Jacobi equation:

STt =H (%, k135 TX). (1.21)

If the value function is twice differentiable, the derivative of (1.21) with respect to x can
be taken:

- 23/ 9Ixqt = TH /I + (TH /9p) 123 * / %2 (1.22)
Differentiating (1.18) with respect to t, however, yields
P = (123 */Ix*)x* +923* /Tt (1.23)

If we further assume twice continuous differentiability, the second order mixed partial

derivatives are equal whatever the order of differentiation: 2J* /fxfit = 12J* / ity
Since from (1.19) and (1.3) we have

x* = (1/Mp)H (x*,u*,t, p), (1.24)

we can substitute (1.22) and (1.24) into (1.23) to get
- p=(T/MIX)H (x*,u*t, p). (1.25)

Equation (1.25) is often called the adjoint equation and the pair, (1.24) and (1.25), is
called the canonical equations of the maximum principle.

The transversality condition (1.17) gives the value of the adjoint variable at time

p(t,) = 1S, (x* (t,), ) /Tx. (1.26)
Finally, the time derivative of the Hamiltonian along the optimal path is

dH _SH o JH L TH L TH

dt Tx T Mt

From (1.24) and (1.25), the sum of the first two terms on the RHS is zero. The third
term vanishes because either H/fu=0 for an interior solution or u=0 for a
boundary solution.

Thus we have

aH _TH (1.27)

a 1t
except when the control vector has a jump.

The maximum principle approach solves the ordinary differential equations (1.24)
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ad (1.25) with the boundary conditions x(t,)=x° and (1.26). Since boundary
conditions are given at two points, i.e, at initial time t, and terminal time t,, this

problem is called a two-point boundary value problem. The pair of ordinary
differential equations are usually easier to solve than the partial differential equation of
dynamic programming.

2. An Example: Optimal Growth of Cities

Consider the problem which was formulated in section 3 of Chapter VII:
maximize

U, P - vt (21)
subject to the differential equation,
k(D) = f (K(D), P() - 1K(D) - o(t), (22)
and the initial condition,
k(0) =k, (2.3)

where control variables are the per capita consumption of resources, c(t), and the
population of a city, P(t); the state variable is the capita stock, k(t); A is the

growth rate of the whole population; and u* is the utility level at the optimal steady
Sate.

The fact that the terminal time is infinite causes some complications. We first
solve the finite-horizon problem of maximizing

QLU etd). Po) - urlet + S (k(t) 1) (24)

subject to the same constraints.

The Hamiltonian for this problem is
H (k(t),c(t), P(t),t, q(t)) =U (c(t), P(®)) - u* +a(t)[ f (k(t), P(t) - 1 k(t) - c(t)], (2.5)

where q(t) is the adjoint variable associated with the differential equation (2.2).
Discussions in the previous section show that q(t) can be interpreted as the marginal
value of capital.

According to (1.20), the Hamiltonian must be maximized with respect to the
control variables, c(t) and P(t). Assuming an interior solution, we obtain

U, (c(t), P(t) =a(t), (2.5)

U, (c(t), P(t) =q(®) fo (k(D), P)), (2.6)
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which are equations (V11.3.8a) and (V11.3.8b) in Chapter VII.
q(t) satisfies the adjoint equation,
- 4(t) = TH /Tk =qO[ f, (k©). P(t) - 1] (27)
which is (VI11.3.7).
The transversality conditionat t=t, is
q(t,) =1S,(k(t,),t,)/ Tk. (2.8)

In the case where the terminal time is infinite, a straightforward application of the
transversality condition(1.26) would yield

lim q(t) =0.

It can be shown, however, that this is not the correct transversality condition. As
shown in Chapter VI, the optimal path converges to the optimal steady state at which

U(c,P)- u*
is maximized subject to the constraint,
f(k,P)- k- c=0.

Denoting the values of variables at the optimal steady state by asterisks, we can write
the transversality condition as

Iim q()k(®) =g k*, (2.9)
where g* =U_(c*,P*).

3. TheMaximum Principle: The Problem of Hestenes and Bolza

In this section the problem in section 1 is generalized in a number of respects.
Differences from the problem in section1 are as follows.

(i) The number of state variablesis arbitrary.

(i) Control parameters are added. Control parameters are choice variables which are
restricted to be constant for any t.

(iii) The constraints on the control vector may depend on the state vector, control
parameters, and time.

(iv) Isoperimetric constraints, or constraints involving integrals, are added.
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(v) Theinitial time t, and the terminal time t, may be chosen by the choice of control
parameters.

(vi) The initia state x(t,) and the terminal state x(t,) can also be chosen by the
choice of control parameters.

The problem to be solved is that of maximizing the objective functiona,

J =éi fo (X(t), u(t), b, t)dt + Sy(b), (3.2
subject to the constraints,

% = f. (X(t),u(t),b,1), i=12..n; (3.29)
g; (x(t),u(t),b,t)>0, j=12,..mc; (3.2b)
g; (x(t),u(t),b,t) =0, j=m+1m+2,..m; (3.2¢)
(t‘tim(x(t),u(t),b,t)dt +S.(b)2 0, k=12,...,/¢ (3.2d)
é;m(x(t),u(t),b,t)dﬁsk(b):0, K=/0(+10+2,...,0; (3.2¢)
t, =t,(b); (3.2f)
t, =, (b); (3-29)
X (t,) = X (b), i=12..n; (3.2h)
X (t,) = %' (b), i=12..n. (3.2)

X(t) = (% (t), X (1),..., X, (1)) is the state vector; u(t) =(u(t),u,(t),...,u, (t)) is the
control vector; b= (by,b,,...,b,) is the vector of control parameters; (x(t),u(t),t) lies
inaset R, in (xu,t) space; and b lies in an open set B. The maximization is
carried out with respect to the control vector and control parameters.  S,, S, fg,
fi, g;, he, X2, X, to,and t,, areall assumed to be continuously differentiable.

Now, defineaset A asthesubset of R,” B satisfying

g] (X!u!b!t)S 01 J :].,Z,m(
g;(xubt)=0, j=m+lim+2,.m

The set A is called the set of admissible elements.
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The constraints are assumed to satisfy the condition that the matrix G, defined as

eﬂgl TIgl Wﬂgl ,gllo 0 >°°<0 8
"ﬂul Tu, T, U
eﬂgZ ﬂgZ »«ﬂgz 0, do, 0,20 l;l
GO gy ‘fu, T, i (33)
WMWOOOO«W l:l
é a
e‘ﬂgm T9m o T 0 0 0x¢ xe¢g, U
@ﬂul flu, flu, H

hasrank m.  This condition is called the constraint qualification.

The necessary conditions for the maximization problem can be stated as the
following Theorem, which is due to Hestenes (1965).

Theorem: Suppose the trajectory {(x* (t),u*(t),b*):to £t£} maximizes (3.1)
subject to the constraint (3.2) among the trajectories whose x(t) is continuous, u(t)
piecewise continuous, (continuous except possibly for a finite number of discrete
jumps), (x(t),u(t),t)T Ry,and bl B. Assume the constraint qualification (3.3) holds
for any (x,u,b,t) inthe set of admissible elements A. Then there exist multipliers;

P=(P,P,...P),
=0l el ),
m=(m, m,,...,m),

not vanishing simultaneously on t, £t £t;, and functionsH and L where

H (x(t), u(t), b,t, p(t), m)

= pofo(X(t),U(t),b,t) +é- P| (t) fi (X(t),U(t), b!t) +é. n}(h((X(t),U(t),b,t)

i=1 k=1
L(x(t),u(t),b,t, p(t),m,I (1)

= H(x(®.ut) b, pO.m+a 1 ;g (xB).u(t).bt)
=1

such that the following relations hold;

(@ The multipliers py,m,k=12....¢, are constant, p,>0, and m >0,k =1.2,..., ",
with
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Ml GO .U .0 D+ S, ()P =0, k=12,...0.

(b) The multipliers | ,(t), j =12,...,m, are piecewise continuous and are continuous
over each interval of continuity of u* (t). Moreover, for each j=1,2,...,m’, we have

1,130, 1;(t)g;(x*(t),u* (t),b*,t) =0.

(¢) The multipliers p,(t),i =1,2,...,n, are continuous and have piecewise continuous
derivatives. They satisfy the adjoint equations;

- Pi(®) = (T/9% )H (x* (t),u* (), b*,t, p(t),m), i=12,..,n.
(d) The maximum principle expressed in the inequality
H (x* (t),u* (t),b*,t, p(t),m) 3 H(x* (t),u,b,t, p(t), m)
holds for all [x*(t),u,bx,t,]11 A, which implies that
(1/u) L(x* (1), u* (£),b*,t, p(t),m, ! (t)) =0.

(e) The following transversality condition holds:

T || I 1S 3 5
dt=-pp - § M
Qﬂbj Po fIb; 9:1 Kflb;
¢ M,  d % U
+ L*(t,)—L + - (t,) ——
g (t) b ia:tl p; (ty) ﬂbja
¢ M, & U
S & L*(t )_0+a pi(t )—/4 ]=12,..,q,
8 ° b, = ° Tb; g

where L* (t) = L(x* (t),u* (t),b*,t, p(t),m,I (t)).
(f) Thefunction L*(t) iscontinuouson t, £t £t;, and
(d/dt)L* (t) = (T/ M)L(x* (t),u™ (t),b*,t, p(t),m, 1 (1))

on each interval of continuity of u* (t).

The reason why these conditions are necessary for the optimum can be understood
by considering the following Lagrangianin the integral form:

202



Appendix 1V

L = Pogf:;l‘b’ o(X(0) u(). b )t + S (0)%

Jb), o

{a P (O f; (x(1), u(t), b, t) - % (1)]

vy (g, (x(t), u(t), b, ld
j-l

a rn({oﬁi’) hy (X(0), u(t). b, )ckt + S (b)}

+ a 9% (to) - X (b)] + a giTx () - (o).

i=1

Observing that integration by parts yields
J . N . e
Q P OXMdt =g ROX M) - g RH)xt)at
=R ()% (1)~ Rlto)x () - ¢ R OX M)k,
we can rewrite the Lagrangian as

L = (‘j( b Lxt).u(t).bit, po),m! (t))+a Px,i;dt

n

A DX W)+ A P o)X ()

i=1 i=1
J4

+ PoSp(0) + & McSk(b)
k=1

+8 0lx (t)- x°0)]+ & gilx () - )]
i=1 i=1

By analogy to the usual method of Lagrange, this Lagrangian must be maximized,
without constraints, with respect to u(t), b, x(t), x(t;) and x(t,). Maximization of
the Lagrangian with respect to u(t) between t and t+Dt is equivalent to
maximization of

L(x(t),u(t),b,t, p(t),m,1 (t))Dt
with respect to u(t). Thisyields condition (d).

In the same way, maximization with respect to x(t) yields the adjoint equations
in(c). Maximization with respectto x;(t,),x (t,) and b, yields
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L

" P@II=0 i=12...n,
L . .
=- 'tO i _O, =12,..., ,
™ (t,) Pi{to) *0 =12
oIS, g m IS T L(to>’“°

™, °W, &, <Tb ﬂb

0 ﬂX, a gul ﬂX, u&

o
b, %% Qb

ag| ) j :1,2,...,(].

=0

Condition (e) can be obtained by combining these equations.

Condition (f) is a generaization of (1.27) to alow for time dependent constraints
(3.2b,c).

The multiplier p, is added to include the so-caled abnormal case in which

p,=0. If p,=0, the same control is optimal for problems with any objective

functionals so long as al the constraints are the same.  Thus for abnormal problems the
necessary conditions do not involve the objective functional, but are already specified
by constraints.  This happens, for example, when there is only one control trajectory
that satisfies all the constraints.  If constraints are

x=u(t)®,
S1EU(DEL  tEtEL
X(t;) =0,
x(t,) =0,
then the only possible control trgjectory is
u(t) =0, to EtEL,

and the optimal solution does not depend on the objective functional.

The reason why p, is zero in such a case can be seen by going back to the

dynamic programming approach in section1. Since the control cannot be changed, it
Is also impossible to change the state trgjectory. This means that it is prohibitively

costly to change the state trajectory:  §J*/xin (1.14°) and hence p(t) in (1.19) are
infinite. Since p, was taken to be 1 in section 1, this is equivalent to p, =0 with
p,, 1=1..,n, finitein this section.
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In this book, we assume that all the problems are normal, and normalize p, to
be 1.

The constraint qualification is assumed because the proof of the maximum
principle considers perturbation of the control vector u(t) such as

G-l v trestat
“1u(t) for other values of t1 [to,4]

for a small e, and derives the necessary conditions from the property that at the
optimum no perturbation can make the objective functional greater. If the constraint
qualification is not satisfied, there exist no nontrivial perturbations that satisfy the
constraints (3.2b) and (3.2c). For example, if there are two equality constraints:

g, (u,u,) =0,
g, (uy,u,) =0,

which are tangent only at a single point  u* = (u*,u,*) asin Figure 2, only one control
vector satisfies the constraints and no perturbation is possible.

Figure 2. Constraint Qualification

In this case, the gradient vectors,

N €19, (U*)/ flu, G
Ng,(u*)=a i
%)= g, 1)/, 4
€19, (u*)/Tu, 0

NG = g )/,
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are linearly dependent and the rank of the matrix,

_ éﬂgl/ﬂuliﬂgl/ﬂub 91’0@
B a]gz/ﬂul,ﬂgz/ﬂuz,O, ng
_ éﬂgl/ﬂul’ﬂgl/ﬂubo’o@

_g‘ﬂgz/‘ﬂul,ﬂgz/ﬂuz,0,0H ’

islessthan m=2.

4. Examples: Optimum Cities

Two optimum control problems formulated in Chapter 1 are solved in this section.
Consider first the problem of maximizing the Benthamite social welfare function,

c‘fu(z( x), h(X))N(X)dx, (4.1)
subject to the resource constraint,

Pw- 1209 +t(IIN () + R ()} dx = 0 42)
the population constraint,

(‘;N(x)dx- p=0, (4.3

and the land constraint,
g(x) = N(x)h(x), O£ xXEX. (4.9

Control variables are the consumption of the consumer good, 2z(X), the consumption of
land for housing, h(x), and the population density, N(X). The edge of the city, X,

Is a control parameter. There is no state variable in this problem because there is no
congtraint in the form of a differential equation.

The function H in the previous section now reads

H (z(x), h(x), N(x),x,1 ,d,g)
=1 u(z(x), h(x))N(x) - d{[z(x) +t(X)IN(X) + Rg (x)} + AN (X)

Thefunction L is

L(z(x),h(x), N(x), %1 ,d,g,m(X))
=H +m(x)[q(x) - N(x)h(x)]
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and the Lagrangian L is
L =y Lox
Assuming | >0, we normalize | . Withl =1, condition (d) yields
/20 =[u/fz- dIN() =0
L/Th(9) =[fu/fh- MIN(x) =0
TL/IN(X) = u(x) - d[2(X) +t(X)] - mx)h(x) =0,
which corresponds to (1.2.5a), (1.2.5b), and (1.2.50).
From condition (€), we obtain the transversality condiition,
L*(X) = u(z(X), h(x))N(X) - d{[z(x) +t(X)]N(X) + R (X)} +aN(X) =0,
which corresponds to (1.2.50).
Condition (f) implies

dL* (x)/dx = m(x)q (x)
Next, we impose the constraint that households receive equal utility:
u =u(z(x), h(x)), O£ XEX,

and maximize the sum of utilities,
X
QUN (X)dx.

Constraints, (4.2), (4.3), and (4.4), remain the same. In this case, u is an additional
control parameter. Define

H (z(x),h(x), N(x),u,x,l ,d,g)
=1 uUN(x) - d{[z(x) + t(X)]N(x) + R,q(x)} +gN(x)

L(z(x),h(x), N(x),u, x,1 ,d,g,u(x), m(x))
= H +u(x)[u(z(x),h(x)) - u] + m(x)[q (x) - N(x)h(x)]

L = Sde.

Again, we normalize | . Condition (d) becomes

L/%2(0) = - AN (x) +u(x) y/ Iz =0
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L/Th(x) =u(3) Tu/h- ME)N (x) =0
TIL/TN (x) =u- d[z(X) +t(x)] - m(x)h(x) =0
which correspond to (1.2.22a), (1.2.22b), and (1.2.22c), respectively.
Condition (e) yields
L* (X) =uN(X) - d{[z(X) +t(X)IN(X) + Rq (X)} =0

(‘5N(x)dx- (‘;u (x)dx=0,

which correspond to (1.2.22d) and (1.2.22€) respectively.
Finally, condition (f) yields
dL* (x)/x = m(x)q ().

NOTES

Discussions in section 1 are greatly influenced by Dixit (1976), Dorfman (1969)
and Intriligator (1971). For rigorous proofs of the maximum principle, see, for
example, Fleming and Rishel (1975) and Lee and Markus (1967).

The Theorem in section 3 is taken from Hestenes (1965) Hestenes (1966) contains
the theorem and its extensions.

REFERENCES

Bellman, R., (1957), Dynamic Programming, PrincetonUniversity Press, New Jersey.

Dixit, A.K., (1976), Optimization in Economic Theory, Oxford University Press,
Oxford.

Dorfman, R., (1969), "An Economic Interpretation of Optimal Control Theory, "
American Economic Review 59, 817-831.

Fleming, W.M. and R.W. Rishel, (1975), Deterministic and Sochastic Optimal Control,
Springer-Verlag, New York.

Hestenes, M.R., (1965), "On Variational Theory and Optimal Control Theory, " SSAM
Journal of Control 3, 23-48.

208



Appendix 1V

Hestenes, M.R., (1966), Calculus of Variations and Optimal Control Theory, Wiley,
New York.

Intriligator, M.D., (1971), Mathematical Optimization and Economic Theory, Prentice
Hall, New Jersey.

Lee, E.B. and L. Marcus, (1967), Foundations of Optimal Control Theory, Wiley, New
York.

209



