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CHAPTER I 
THE BASIC MODEL 

 
The simple residential land use model developed in this chapter will be used later 

to analyze urban externalities.  It is helpful, however, to examine competitive 
equilibrium and optimal allocation in the basic model first, as we do in sections 1 and 2 
respectively. 

The size and form of a city are at least partially determined by the market 
decisions of households which buy or rent housing.  The decisions involve hundreds of 
factors such as the size of a lot, the size of a house, distance to the workplace, 
neighbourhood characteristics, the quality of the schools, the property tax rate and so 
on.  Although all of these factors are important, in this chapter we concentrate on one 
of the most important: the trade-off between accessibility and lot size.  Our households 
are constantly asking "shall we live in a town-house near work or on a larger lot in the 
suburbs?". 

To avoid unnecessary complications, we make the following assumptions:  

(a) In our city the central business district (CBD) is the only center.  All city 
residents work in the CBD and commute from the surrounding residential area.  
This assumption does not, as it turns out, affect the residential pattern: the 
qualitative results are essentially the same in a multi-centered model.1 

(b) All households are identical.  They have the same preferences and the same 
number of workers.  For simplicity, we assume that each household has one 
worker.  All the workers are assumed to have the same skill.  These 
assumptions are important in deriving some of the results.  The assumption of 
the same skill can be easily relaxed, but it is difficult to obtain clear-cut results 
in a model with different preferences unless the difference in preferences is of 
a particularly simple nature. 

(c) The only transportation costs incurred are the costs of commuting to the CBD, 
either to work or to shop.  The value of commuting time is constant for any 
amount of commuting time and the same for all households.  Time costs are 
included in the pecuniary costs of transportation.  These assumptions are 
easily relaxed.2 

(d) An individual may reside at only one location.  This assumption eliminates, 
for example, households with an apartment in the city and a house in the 
suburbs.  The actual number of such households is so small that they can 
safely be ignored.  As will be seen in Appendix I on equality and the 

                                                 
1 However, it is not easy to determine the number, locations and sizes of centers.  Once they are 
determined, the residential patterns are obtained in essentially the same way as in a monocentric model. 

2 Henderson (1977), for example, uses a model with time costs. 
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Benthamite function, this assumption introduces nonconvexity, and is a major 
departure from the standard neoclassical theory. 

(e) Housing capital can be instanteously adjusted.  Although housing is in reality 
a durable good, we assume that all the characteristics of houses such as the size 
of a lot and the size of a house can be changed instantaneously.  Ours is, 
therefore, a city at the imaginary long-run stationary state, in which the 
capital-land ratio is always perfectly adjusted.  Analysis is simplified by this 
assumption, yet many of the results obtained in the simple polar case carry 
over to more complex cases.  Even if different results are obtained, it serves 
as a useful reference point and illustrates the basic mechanism.  Furthermore, 
the comparative static results of long-run equilibria suggest the direction of 
change of an urban economy to policy changes. 
If we further assume that the relative prices of housing capital (buildings) and 
other consumer goods do not change, then by Hicks' Aggregation Theorem 
houses can be treated as part of the consumer good.3  The assumption allows 
us to concentrate on the amount of land used for housing. 

(f) Transportation requires no land input.  We also assume away traffic 
congestion so that commuting costs are simply a function of the distance from 
the CBD.  This assumption will be relaxed in Chapters IV and V. 

(g) There are no externalities and no public goods.  This assumption will also be 
relaxed in later chapters.  Externalities among producers will be examined in 
Chapter II; local public goods in Chapter III; traffic congestion in Chapters IV 
and V; and externalities between different types of individuals in Chapter VI. 

1.  Market Cities 

In this section we analyze competitive equilibrium of a city.  The equilibrium 
spatial structure is examined in subsection 1.1.  It is assumed that all residents receive 
the same income.  Because everyone is assumed to have the same utility function, the 
utility level must be the same everywhere in the city.  Land rent, thus, declines with 
distance from the CBD to offset an increase in commuting costs.  As the relative price 
of land falls, consumption of land increases while consumption of the consumer good 
decreases.  It follows that population density declines with distance from the center, as 
observed in most cities in the world.  Furthermore, if the commuting cost is a linear or 
concave function of distance, the rent function must be a convex function of distance. 

We consider different income classes in subsection 1.2 although we continue to 
assume that households are identical in all other respects: all households have the same 
preferences and transportation costs.  Under these assumptions, richer households live 
farther from the center than poorer households if land is a normal good.  This result 
follows from the fact that richer households have a flatter rent curve at the boundary.  
The rent must fall with distance from the center in order to offset an increase in 
commuting costs, but the required fall is smaller for richer households since under the 
normality assumption they consume more land, and therefore benefit more from the 
same fall in rent. 

                                                 
3 See Hicks (1946, pp. 312-313). 
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In subsections 1.1 and 1.2, the utility levels and the incomes of residents are left 
undetermined.  Two ways of determining these variables are introduced in subsections 
1.3 and 1.4.  The more popular formulation is that of a closed city, which assumes that 
the population of a city is given.  This type of model may be interpreted as dealing 
with a time period long enough to attain an equilibrium within a city, but too short to 
allow migration between cities.  Since it takes a long time to change the housing stock, 
this interpretation is somewhat schizophrenic. 

It is more consistent to interpret the closed city model as the long-run stationary 
equilibrium of a closed homogeneous economy with given population, a given number 
of identical cities and an insignificant rural sector.  The population of a single city is 
then given by simple division. 

As a natural extension of this interpretation, we can take the number of cities as a 
variable.  A non-urban sector such as an agricultural sector can also be introduced so 
that migration between urban and nonurban sectors can be analyzed.  These extensions 
are considered in the next chapter on city sizes. 

In subsection 1.4 we examine a small "open" city, where openness means that 
migration of households and transportation of products between cities are costless and 
otherwise unrestricted.  In an open city, commodity prices and the utility level of 
residents are equal to those in the rest of the economy.  When an open city is small 
compared with the entire economy, any change in allocation within the city will spread 
over the whole economy and local prices and utility level will not be affected 
significantly.  Prices and the utility level may, therefore, be taken as given for the city. 

This model is appropriate when the long-run allocation of a city is the focus.  A 
city administrator, for example, may want to adopt this model to analyze the long-run 
effects of his policies.  The model may also be applied to cities in developing countries 
with surplus labour, or to cities in a small country which allows free migration. 

In both open and closed cities we have to distinguish between the 
"absentee-landlord" case, in which land is owned by absentee landlords who spend 
their incomes outside the city, and the case of "public ownership".  In our treatment of 
public ownership a city government rents the land from agricultural landowners at the 
agricultural rent and sublets it to households at the market rent, using the net revenue to 
subsidize city residents equally. 

1.1.  The Spatial Structure of a Residential City 

Consider a city in a featureless agricultural plain.  To simplify exposition, we 
assume that production does not require space, so that the CBD is just a point.4  The 
residential zone extends to distance x  from the CBD.  The analysis may be applied 
to any shape, but it is often easiest to imagine dealing with a circular city.  In any ring 
between radius x and , there are dxx + dxx)(θ  units of land available, out of which 

 units are used for housing.  The structural component of housing is included 
in the composite consumer good.  At the edge of the residential zone the residential 

dxxLH )(

                                                 
4 It is not difficult to introduce land use for urban production.  See Appendix II for this extension in the 
context of local public goods. 
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rent must be equal to the rural rent. 

One person from each household commutes to the CBD.  The commuting costs, 
, for a household at a radius x, are assumed to be an increasing function of distance 

from the center: 
)(xt

  0(' >t  .  (1.1) )x

Consumption of the composite consumer good, which includes buildings, and 
consumption of land for housing are denoted by  and  respectively.  
Transporting the consumer good is 

)(xz )(xh

 
Figure 1.  The residential zone 

 

costless.  All households have the same quasi-concave utility function, 

   .   (1.2) ),( hzuu =

We assume that the utility function is appropriately differentiable, although it is not 
necessary for all the results that follow. 

The budget constraint for a household at x is 

 ,    (1.3) )()()()()( xhxRxzxtyxI +=−≡

where  and  are respectively the income net of the commuting costs, the 
gross income, and the residential land rent.  The rent function, , provides the rent 
for a unit area of land at any given radius.  The gross income is assumed to be the 
same for every household.  How the income level is determined will be specified later.  
Note that the consumer good is taken as the numeraire. 

,),( yxI )(xR
)(xR

A household maximizes the utility function, (1.2), subject to the budget constraint, 
(1.3).  The first order condition for this maximization problem is 

 

 )(xR
u
u

z

h = , （1.4） 

 

where subscripts h and z denote partial derivatives with respect to h and z.  This is the 
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familiar condition that the price ratio and the marginal rate of substitution are equal.  
From this first order condition and the budget constraint, demands for the consumer 
good and land can be written as functions of the net income, , and land 
rent, : 

)()( xtyxI −≡
)(xR

 ,       (1.5) ))(),((ˆ)( xRxIzxz =

     (1.6) .))(),((ˆ)( xRxIhxh =

Since these functions describe the levels of demand obtained at a fixed income 
level, they are nothing but uncompensated (or Marshallian) demand functions.  By 
substituting (1.5) and (1.6) into the utility function, we obtain the indirect utility 
function, 

,))](),((ˆ)),(),((ˆ[))(),(( xRxIhxRxIzuxRxIv ≡     (1.7) 

which describes the maximum utility level available to consumers, given the net 
income, , and land rent, .5 )(xI )(xR

The demand functions satisfy the following useful relationships obtained by 
differentiating the budget constraint (1.3): 

 ,  (1.8) 0ˆˆ =++ RR zhRh

 ,  (1.9) 1ˆˆ =+ II zhR

where subscripts R and I denote respectively partial derivatives with respect to  
and .  Using these equations, we can see that the indirect utility function satisfies 
Roy's Identity6: 

)(xR
)(xI

  (1.10) .hvv IR −=

Since households are identical, in equilibrium the utility level must be the same 
everywhere in the city.  Otherwise, households at a place of lower utility level have an 
incentive to relocate, and the allocation cannot be a market equilibrium.  Thus the land 

                                                 
5 See Section 3 of Appendix III on the envelope property for discussions of the indirect utility function in 
conjunction with the Envelope Theorem. 

6 Roy's Identity is derived in the following way.  From (1.7), partial derivatives of  are given by ),( RIv
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In view of (1.8) and (1.9), substitution of (1.4) into these equations yields 

hvv IR −=  . 

See Section 3 of Appendix III for a more elegant way of deriving Roy’s Identity which makes use of the 
Envelope Theorem. 
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rent must satisfy 

     (1.11) ,const.))(),(( ==− uxRxtyv

which can be solved for  to yield )(xR

 .  (1.12) )),(()( uxtyRxR −=

This function is called the bid rent function.  It describes the maximum rent 
which a household can pay at a particular distance from the center if it is to receive the 
given utility level.  If the utility level and the income level are known, the bid rent 
function gives the equilibrium rent.  This is merely a result of the rational behaviour of 
households.  If, for example, the actual rent were lower than the bid rent, it would be 
possible to achieve a higher utility level, and a rational household would not fail to do 
so.  The actual rent cannot be higher than the bid rent simply because it is impossible 
to pay any higher rent and achieve the given utility level.  The bid rent function is 
extremely useful in a model with one type (or a few types) of households, since in each 
type the income and the utility level must be the same at any distance from the center.  
The bid rent function summarizes, in a single function, the rent profile that is 
compatible with the given income and utility levels. 

At the edge of the city, where xx = , the residential rent 
must equal the rural rent Ra: 

 aRxR =)(   .      (1.13) 

Given the levels of income and utility, (1.12) and (1.13) completely determine the 
rent profile.  Once the rent profile is determined, the allocation of a city is fully 
characterized, since (1.5) and (1.6) give the consumption of the consumer good and of 
land for housing at each location. 

In this simple model, the transportation cost function and the utility function 
completely determine the spatial structure of the city as Figure 2 illustrates.  Consider 
any two locations, , and , where  is closer to the center than .  Inspection 
of the budget constraint (1.3) shows that a budget line intersects the vertical axis at 

.  Since the utility level is maximized under the budget constraint, the budget 
line must be tangent to an indifference curve at the optimum.  If the utility level is the 
same everywhere in the city, households are on the same indifference curve, u, at any 
location x.  The budget line is thus fully determined and the consumption of the 
consumer good and land can be read off. 

1x 2x 1x 2x

)(xty −
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Figure 2.  Allocation in the basic model 

 

The bid rent is given by the slope of the budget line.  Convexity of indifference 
curves implied by quasi-concavity of the utility function ensures that the bid rent is 
lower at  than at .  That is, the bid rent curve, , is a decreasing 
function of distance x from the center.  Furthermore, the lot size increases and the 
consumption of the consumer good decreases with distance from the center, as 
households substitute land for the consumer good. 

2x 1x )),(( uxIR

More precise properties can be derived by using calculus.  From (1.11) and Roy's 
Identity (1.10), the rent profile satisfies the following simple relationships: 

 )(1 xhRI =      (1.14) 

 .)(1 xhvR Iu −=    (1.15) 

Thus, demand for land is a reciprocal of the partial derivative of the bid rent function 
with respect to income.  Differentiating (1.12) and substituting (1.14) yields 

 ,0)()()( <′−=′ xhxtxR     (1.16) 

which shows that the land rent declines with distance from the center. 

If demand functions are obtained for a given utility level instead of a given 
income level, we have compensated (or Hicksian) demand functions:7 

      (1.17) )

)

                                                

),(()( uxRzxz =

     (1.18) ),(()( uxRhxh =

 
7 See Section 3 of Appendix III for a derivation of the compensated demand function and its properties 
from the expenditure function. 
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The compensated demand functions are useful since the signs of partial derivatives are 
unambiguous: 

  (1.19) 0≥Rz

 . (1.20) 0≤Rh

The first inequality is a result of the fact that if there are only two goods, they are 
always net substitutes.  The second inequality represents the elementary property that 
the (own) substitution effect is negative. 

The slopes of  and  are obtained from (1.16), (1.19) and (1.20): )(xz )(xh

 0
)(
)(')(')(' ≤−== RR z

xh
xtxRzxz     (1.21) 

 0
)(
)(')(')(' ≥−== RR h

xh
xtxRhxh .   (1.22) 

The consumption of the consumer good is a nonincreasing function and the lot size a 
nondecreasing function of distance.  The latter property is used by urban economists to 
explain the fact that the population density declines with distance from the center in 
most cities. 

Differentiating (1.16) again, we obtain 

 )(
))((
)('

)(
)(")( 2 xt

xh
xh

xh
xtxR ′+−=′′   (1.23) 

From (1.22), a sufficient condition for  is that t  is nonpositive.  This 
yields another well-known result: if the commuting cost is a linear or concave function 
of distance from the CBD, the rent function is convex. 

0)('' >xR )('' x

We were able to treat  and h  as choice variables because we assumed 
that housing capital is extremely cooperative.  We have ignored a very important 
aspect of the housing market: the durability of the housing stock.  The model therefore 
describes a long-run stationary state which may never come to exist.  In order to 
introduce durability we would have to develop a dynamic model, making analysis much 
more complicated. 

)(xz )(x

 

1.2.  Several Income Classes 

The above analysis can be easily extended to include different types of 
households.8  In this section we consider the case where there are two income classes.  
For simplicity, and in accordance with empirical observations, land is assumed to be a 
normal good:  

                                                 
8 Although everybody is assumed to have the same skill, households can have different incomes since 
they may own different shares of firms and land. 
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 . 0)](),([ˆ >xRxIhI

Assuming normality, we can show that there is segregation by income: the 
residential zone is divided into two rings, each occupied by one income class.  
Moreover, we can show that the richer group lives in a ring farther from the center, 
which agrees with the actual residential pattern in most American cities.  The 
argument is quite direct. 

Space is occupied by those who are willing to pay the highest rent for it.  In 
other words, the equilibrium rent at any point is simply the highest of the bid rents at 
that point.  Now, the bid rents are functions of income and utility levels, and the rich 
have higher incomes than the poor: . >ry Py

At some radius x*, rich and poor living in the same city must live side by side.  
This radius is the boundary between two rings of households with different incomes.  
At this location the two income groups must pay the same rent.  From (1.16), the bid 
rent function is steeper for the lower income group since t' is the same for both groups, 
and by the normality assumption the lower income group consumes a smaller amount of 
land.  It follows that the richer income group has the higher bid rent outside x* and 
lives there.  Thus the equilibrium residential pattern is complete segregation with the 
richer income class living in the outer ring.9 

 
Figure 3.  Two income classes 

 

The flatter bid rent curve of the rich can be understood as follows.  Suppose that 
as a poor household moved outwards, the loss of utility due to increased commuting 
costs was just offset by an increase in utility arising from increased land use.  Clearly, 
this is possible only if the rent on a unit of land falls.  But since richer households have 
larger lot sizes, the same decline in rent allows them larger savings in the total 

                                                 
9 For arbitrary utility levels, it is possible that the bid rent of one income class is higher than that of the 
other everywhere in the city.  In such a case only one income class lives in the city.  The utility levels 
must be adjusted in order for both groups to live in the city. 
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expenditures on land.  Richer households, therefore, benefit more from the same fall in 
rent and would be willing to accept a smaller decline in rent as they move outward.  
The bid rent curve of the rich thus falls less rapidly with distance from the center. 

This result has been used to explain the residential pattern observed in the United 
States.  However, it crucially depends on the assumption that all income classes have 
the same commuting costs.  Since time costs constitute a large portion of commuting 
costs, richer households may live closer to the center if their value of time is much 
higher than poorer households'.  This may explain why the opposite spatial pattern is 
observed in most cities in Europe, Latin America and Japan, as well as the existence of 
high-rent luxury apartments near the center of most cities.  According to an empirical 
study (1977) by Wheaton, if time costs are taken into account, the tendency of wealthier 
households to move to the periphery is weak even in American cities.  This suggests 
that the observed pattern is mainly caused by other factors, such as the concentration of 
older houses in central cities. 

1.3  A Closed City 

In the previous subsection, important variables such as incomes and utility levels 
were left undetermined.  In this and the following subsections, different ways of 
determining them are introduced.  For simplicity, we consider cities with only one 
income class. 

The analysis in subsection 1.1 shows that the allocation of a city is completely 
determined by utility maximization of households and spatial arbitrage, if the utility 
level, the income level and the size of the city are specified.  Since we already have 
condition (1.13) as one of the three equations required to determine these variables, 
only two more equations must be specified. 

In this subsection, we consider a closed city; immigration into and out of the city 
is impossible and therefore the population is fixed.  For convenience, the population is 
identified with the number of households.  Denoting the total population of the city by 
P, the population constraint is 

 ∫=
x

dxxNP
0

)(

)(xN

    (1.24) 

where  is the number of households living between x and .  Recalling 
that  and  denote respectively the total land available for housing and the 
lot size at radius x, we can write  as 

dxxN )(
)(xH

dxx +
L )(xh

 
)(
)(

)(
xh
xL

xN H=    (1.25) 

The aggregate production function is 

 ,     (1.26) )(PFY =

where all factors other than labor are assumed to be fixed and suppressed.  If a city 
resident is paid the value of the marginal product of labor, the wage rate is given by 

.  If city residents collectively own firms and factors other than labor, a city 
resident will receive the average product, 

)(' PFw =
PPF )( .  In either case wages are a fixed 
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amount w if the population is fixed. 

Income may differ from wages depending on the treatment of land rent.  We 
consider only the two polar cases; the "absentee-landlord" case, and the 
"public-ownership" case.  Intermediate cases are left to the reader.  In the 
absentee-landlord case, land is owned by landlords who do not live in the city, and the 
rent is spent outside the city.  The income of a resident is simply the given wage rate: 

 .      (1.27) wy =

(1.24) and (1.27) give our missing two equations and the allocation of the city is 
completely determined. 

The absentee-landlord case is used more often in descriptive analysis to avoid an 
artificial institutional arrangement.  If the optimality of an allocation is a major issue, 
however, the absentee-landlord case is not convenient because the welfare of absentee 
landlords has to be taken into account, forcing us to compare utilities of landlords and 
tenants.  We shall therefore adopt the public-ownership framework in normative 
analysis. 

For the public-ownership case we assume the following rather artificial 
institutional arrangement.  The city residents form a government which rents the land 
for the city from rural landlords.  We assume that landlords cannot obtain any 
monopolistic power, so that the city government needs only to pay the rural rent Ra.  
The city government, in turn, subleases the land to city residents at the competitively 
determined rent, .  The net revenue is divided equally among households. )(xR

There is dxx)(θ of land between x and , out of which the city sublets 
 to city residents and uses the rest for public purposes such as roads and parks.  

The net revenue of the government is then given by 

dxx +
dxxLH )(

 [ ]∫ −
x

aH dxxRxLxR
0

)()()( θ    . 

The income of a household is the sum of wages and the "social dividend" it receives 
from the city government: 

 [ ]dxxRxLxR
P

wy
x

aH∫ −+=
0

)()()(1 θ    (1.28) 

We temporarily assume that the entire land is rented to city residents for residential use: 

 )()( xxLH θ=               xx ≤≤0      (1.29) 

We shall relax this assumption in Chapter IV when we introduce land for transportation 
use. 

(1.28) describes how factor incomes are allocated.  If we consider how the goods 
are allocated, the following constraint is obtained: 

 [ ]{ }∫ ++=
x

a dxxRxNxtxzPw
0

)()()()( θ     (1.30) 

The city residents collectively command Pw units of the consumer good, which are 
consumed or spent on commuting costs and the payment of the rural rent.  This 
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constraint is a resource constraint that the city faces and will be used in the 
optimization framework.  The equivalence of (1.28) and (1.30) can be readily derived 
by using the budget constraint (1.3). 

 

1.4  A Small and Open City 

A perfectly closed city is one where migration in and out is impossible.  It is 
useful to consider the case in which migration is possible.  We assume that migration 
of households and transportation of products between cities are completely costless.  
We further assume that the city is so small that any change within the city does not 
affect the outside world.  Prices and the utility level within the city, therefore, equal 
world levels and may be taken as given. 

Since the population size is endogenous in an open city, wages cannot in general 
be taken as exogenous.10  Therefore, the income of a household is 

  )(Pwy =

in the absentee-landlord case, and 

 [ ]dxxRxLxR
P

Pwy
x

aH∫ −+=
0

)()()(1)( θ  

in the public-ownership case.  Either of these equations, if coupled with (1.24), 
determines the population size and the income level, and thereby completely specifies 
the resource allocation in the city. 

Although it is possible that the city government would be controlled by old 
residents who treat newcomers differently, as in some of the club theory literature, for 
example, McGuire (1974), we shall not pursue this line here.  We assume that 
newcomers receive all privileges of citizenship including a share of net city revenue. 

If a city is not small but open, a case intermediate between a closed city and a 
small city is obtained.  Given the total population of the economy, the population of 
the rest of the economy can be expressed in terms of the population, P, of the city.  
When households leave the city, the marginal product of labour rises in the city and 
falls elsewhere, as a result of diminishing returns.  Since migration is free, equilibrium 
will be reached when the utility level outside the city, V , equals the 
utility level in the city: 

0)(':)( >PVP

 . )

                                                

(PVu =

This condition replaces the fixed-population constraint in a closed city and the 
fixed-utility constraint in a small city.  This more general formulation will be used in 
Chapter VI.  Note that the polar cases of V  and V  yield a small 
city and a closed city respectively. 

0)(' =P ∞=′ )(P

 
10 If, however, constant returns to scale are assumed and a resident receives the average product, w is 
constant. This assumption is quite often made (at least implicitly) in the literature. 
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2.  Optimum Cities 

To obtain an optimal allocation, an objective, or criterion, function must be 
specified.  Probably the most natural one is a Benthamite social welfare function 
which is the sum of the utilities of individual households, 

∫
x

dxxNxhxzu
0

)())(),(( . (2.1) 

Note that the Benthamite social welfare function requires that utility be cardinal.11  In 
addition it is commonly assumed that the marginal utility of income decreases as 
income increases.  This is a cardinal property and it is represented by the assumption 
that the utility function is concave. 

We can imagine the Benthamite optimum being achieved as follows.12  Let an 
individual choose the optimal resource allocation, including income distribution, based 
on her own selfish preferences.  Decisions must be made, however, "behind the veil of 
ignorance": she must not know which of the residents she will become.  If she has an 
equal chance of becoming any of the residents, her expected-utility maximization is 
equivalent to maximizing the Benthamite social welfare function. 

It turns out that at the Benthamite optimum the utility level varies with the 
distance from the center.  When land is a normal good, the utility level rises with 
distance from the CBD.  It also turns out that for an appropriate unequal income 
distribution the corresponding competitive equilibrium exactly replicates the optimum 
solution. 

Theorists have been intrigued to find that the optimal utility levels differ among 
locations even though the social welfare function is egalitarian.  This result is 
surprisingly robust, at least among additive social welfare functions.  It can be 
explained as follows.  Because of the difference in commuting costs, identical 
households at different locations have different capability to generate utility from the 
same amount of resource.  The Benthamite optimum, therefore, is attained if more 
resource is allocated to the more efficient households. 

As Appendix I shows, the difference in the efficiency with which households 
realize utility from their commodity bundles arises from the most fundamental 
properties of our spatial allocation problem.  We assumed that a household cannot live 
at more than one location.  Each household, therefore, must choose one location, and 
every location has an associated commuting cost.  Identical households with equal 
incomes, once they choose different locations and hence different consumption bundles, 
are in effect no longer identical.  If households are able to divide their time among two 
or more residences, however, every household faces the same opportunity set and the 
inequality of utility levels will disappear. 

                                                 
11 If utility is merely ordinal, any monotonic transformations of a utility function are considered as 
equivalent. A monotonic transformation can, however, yield a different Benthamite optimum.  In order 
to obtain the same Benthamite optimum, we must assume that utility functions are equivalent only up to 
linear transformations, i.e., utility is cardinal. 

12 See, for example, Arnott and Riley (1977). 
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Even if the social welfare function is made more egalitarian by taking a concave 
transformation of the utility function - that is, if a new social welfare function, 

[ ]∫
x

dxxNxhxzu
0

)())(),((φ , 

is adopted - the optimal allocation continues to have unequal utility levels.  This 
conclusion follows immediately from the observation that even if we redefine the utility 
function as ))(()( ⋅=⋅ uU φ , our assumptions on the original utility function still hold for 
the new one. 

The only way of obtaining an equal utility level with an additive social welfare 
function is to take a limit coinciding with the Rawlsian welfare function, which 
maximizes the minimum utility level.  For example, Dixit (1973) considered the 
welfare function 

 ∫ −−
x m dxxNxhxzu

0
)())(),((  

and obtained a uniform utility level by taking the limit as .  Appendix I 
contains a detailed discussion of why utility levels differ between different locations 
except in the limit. 

∞→m

Some economists prefer the Benthamite welfare function on the grounds that the 
Rawlsian welfare function has the undesirable property of ignoring the welfare of all 
but the poorest individual.  Although the Rawlsian function is the only additive social 
welfare function that yields equal utility, there are other nonadditive functions that will 
do.  As shown in Appendix I, equal utility requires social welfare indifference curves 
to have sufficiently strong kinks on the line where utility levels are equal. 

Except in this section we will consider only cases where utility levels are equal 
for identical households.  The reason is twofold.  First, this case is mathematically 
more tractable, and easier to compare with the market equilibrium.  Second, readers 
might object to giving different utility levels to households which differ only in the 
location of their residences. 

2.1  A Closed City 

In this subsection, we consider optimal allocation of a closed city.  Only the 
public-ownership case is analyzed because in the absentee-landlord case the welfare of 
absentee landlords must be taken into account, which destroys the simple structure of 
our problem.  The total amount, Y, of the consumer good produced in the city is used 
for direct consumption, transportation, and the payment of the rural rent.  The resource 
constraint for the city is then 

 [ ]∫ ++=
x

a dxxRxNxtxzY
0

)()())()(( θ        (2.2) 

which corresponds to (1.30) in the previous section.  The city 

also faces the population constraint, (1.24), and the land constraint, 

 )()()( xhxNx =θ ,  xx ≤≤0  (2.3) 

The land constraint is obtained by combining (1.25) and (1.29). 
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The objective function is the Benthamite social welfare function (2.1).  The 
Lagrangian for this problem is 

[ ]{ }
[ ] )4.2(,)()()()()(

)()())()(()())(),((

00

00

∫∫

∫∫
−+



 −+

++−+=Λ
xx

x

a

x

dxxhxNxxdxxNP

dxxRxNxtxzYdxxNxhxzu

θµγ

θδ
 

where δ , γ  and )(xµ  are respectively Lagrange multipliers associated with (2.2), 
(1.24) and (2.3).  δ  can be interpreted as the shadow price of the consumer good, γ  
the shadow 'price' of a household (with the total production in the city fixed), and )x(µ  
the shadow rent of land, all in utility terms.  The shadow 'price' of a household may 
sound peculiar, but it naturally appears in our problem because an increase in 
population changes the maximum value of the Benthamite social welfare function.  
The choice variables are , and )(),(),( xNxhxz x , where , , and  are 
chosen at each x between  and 

)(xz )(xh )(xN
0 x . 

As shown in section 4 of the appendix on optimal control theory, control theory 
may be applied to this problem and the following first order conditions are immediately 
obtained: 

δ=))(),(( xhxzuZ ，  xx ≤≤0 , (2.5a) 

)())(),(( xxhxzuh µ= ， xx ≤≤0 , (2.5b) 

[ ] γµδ +++= )()()()()( xhxxtxzxu , xx ≤≤0 ,       (2.5c) 

[ ] )()())()(()( xRxNxtxzxu aθδγδ =−+− . (2.5d) 

Using (2.5c), (2.5d) can be written 

 aRx δµ =)(  (2.5d') 

(2.5a) and (2.5b) require that the marginal utility of the consumer good equal its 
shadow price, and that the marginal utility of land equal the shadow rent at each radius.  
(2.5c) means that the utility level of a household equals the shadow value of its 
consumption bundle plus the shadow 'price' of a household.  A household at x 
contributes to the social welfare by , but consumes resources whose value is )(xu

[ ] )()()()( xhxxtxz µδ ++ .  The difference is the marginal social value of a household, 
or the shadow 'price' of a household, γ .  According to (2.5d'), the shadow rent of the 
city equals the rural rent times the shadow price of the consumer good at the optimum. 

If the utility function is concave and land is a normal good, we can also show that 
the utility level rises with distance from the center at the Benthamite optimum.  
Differentiating (2.5c) with respect to x and substituting (2.5a) and (2.5b) yields 

0)(/)()( <′−=′ xhxtx δµ .   (2.6) 

Thus the shadow rent is a decreasing function of distance from the center.  The desired 
result follows if the optimal utility level is a decreasing function of the shadow rent. 

Implicit differentiation of (1.3) and (1.4) yields the income derivative of the 
uncompensated demand function for land: 
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 )(),(ˆ
ZZhZhZ

Z
I uuuu

D
uRIh −= ， (2.7) 

where 

 ．   (2.8) hhZZZhhZhZ uuuuuuuD 222 −−≡

Since D is nonnegative when the utility function is quasi-concave, (strong) normality of 
land, , implies that 0ˆ >Ih

 .      (2.9) 0>− zzhzhz uuuu

From (2.5a) and (2.5b),  and  can be written as functions of )(xz )(xh )(xµ  
and δ : )),((~ δµ xz and )),((~ δµ xh , and the optimal utility level as  

[ ] )),((~)),((~),),(~)(* δµδµδµ xuxhxzuxu ≡= ． 
 
Differentiating (2.5a) and (2.5b), we obtain 
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From these equations, we get 
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d
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−
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=+=
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µµµ
  ． （2.10） 

 

This is negative since the denominator is nonnegative when the utility function is 
concave and the numerator is negative from (2.6).  Therefore, from (2.9) we obtain 

 0)(
~*

>′
∂
∂= xu

dx
du µ

µ
.      （2.11） 

Thus, the optimal utility level rises with distance from the center. 

Next, we examine whether the optimal allocation is attained as a competitive 
equilibrium.  An allocation is a competitive equilibrium in our model if the following 
conditions are satisfied: 

(i) Each household maximizes the utility level with respect to z and h subject to 
the budget constrain and taking the land rent, , as given. )(xR

(ii) No household has an incentive to move to other locations. 

(iii) Demand for land equals supply of land. 

(iv) Demand for the consumer good equals the supply of the consumer good. 

(v) The rent at the edge of the city equals the rural rent. 
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Defining δµ /)()( xxR ≡  and δγ /))(()( −≡ xuxy ， (2.5a) through (2.5c), (2.5d') and 
(2.6) can be rewritten 

.,const))(),(( =xhxzuz       ,0 xx ≤≤ , (2.12a) 

),(/ xRuu zh =        xx ≤≤0 ， (2.12b) 

),()()()()( xtxhxRxzxy ++=  xx ≤≤0 ,    (2.12c) 

aRxR =)( ，        (2.12d) 

)(/)()( xhxtxR ′−=′ ，       xx ≤≤0  (2.12e) 

Condition (i) is satisfied at the Benthamite optimum since (2.12b) is the first order 
condition for the problem of maximizing the utility function, , subject to the 
budget constraint, , with respect to z and h. 

),( hzu
)()()( xthxRzxy ++=

Condition (ii) is satisfied if a household living at any radius x* achieves its 
maximum utility at x*, that is, a household with income  maximizes the 
indirect utility function, v , with respect to x at x*.  The first order 
condition for the maximization is 

*)(xyy =

))(),(( xRxty −

[ ] 0)())(),(()( =′+−′−= xtxRxtyhxRv
dx
dv

I

)
,    (2.13) 

where we used Roy's Identity (1.10), and  is the uncompensated demand for land 
(1.6).  (2.12e) ensures that (2.13) is satisfied at the Benthamite optimum.  The second 
order condition is 

)(ˆ ⋅h

[ ] 0)(ˆ)(ˆ)(()()()(2

2
≤′+′−′+′′+′′−= xRhxthxRxhxRxtv

dx
vd

RII . (2.14) 

Since (2.13) is satisfied at each x if , we have )(xyy =

0)())(),()((ˆ)( =′+−′ xtxRxtxyhxR ,   xx ≤≤0 0.  (2.15) 

Differentiating this equation with respect to x yields 

0)](ˆ))()((ˆ)[()()()( =′+′−′′+′′+′′ xRhxtxyhxRxRxhxt RI . (2.16) 

Using this equation, the second order condition becomes 

0)()(ˆ
2

2

≤′′= xyxRhv
dx

vd
II     xx ≤≤0 , (2.17) 

which is satisfied at the Benthamite optimum since from (2.11) we have 

 0/)()( >′=′ δxuxy   (2.18) 

if .  This also shows that the income level rises with distance from the center in 
market equilibrium, and corresponds to the result in subsection 1.2 that if land is 
normal, richer households live farther away from the center than poorer households. 

0ˆ >Ih

Conditions (iii), (iv) and (v) are guaranteed by (2.3), (2.2) and (2.12d).  Thus the 
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Benthamite optimum is attained as a competitive equilibrium for a suitable choice of 
income distribution. 

Now we add the constraint that the utility level be equal everywhere in the city, 
and maximize this equal utility level.  Thus, our problem is one of maximizing 

 ∫ dxxuN
x

)(
0

   (2.19) 

subject to the resource constraint (2.2), the population constraint (1.24), the land 
constraint (2.3), and the constraint that the utility level be equal everywhere in the city, 

))(),(( xhxzuu = ,      xx ≤≤0 . (2.20)  

The Lagrangian for this problem is 
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The only new Lagrange multiplier is )(xν  which can be interpreted as the weights that 
have to be attached to the utilities of households at different locations if all households 
are to obtain equal utility levels. 

As shown in section 4 of the appendix on optimal control theory, the first order 
conditions are 

0)()( =− xNux z δν             xx ≤≤0        (2.22a)  

0)()()( =− xNxux h µν              xx ≤≤0   (2.22b) 

[ ] )()()()( xhxxtxzu µγδ =−+−     xx ≤≤0  (2.22c) 

[ ] )()())()(( xRxNxtxzu aθδγδ =−+−             (2.22d) 

dxx
x

dxxN
x

)(
0

)(
0

ν∫∫ =  (2.22e) 

The difference from the Benthamite case mainly lies in (2.22a).  Here, the marginal 
utility of the consumer good does not need to be equal at different locations, while the 
utility level is equal.  In the Benthamite case, the marginal utility is equal but the 
utility level is not. 

Defining δµ /)()( xxR ≡  and δγ /)( −≡ uy , (2.22a) through (2.22e) can be 
written 

)(/ xRuu zh = ,                  xx ≤≤0     (2.23a)  

)()()()( xtxhxRxzy ++= ， xx ≤≤0      (2.23b) 
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aRxR =)( ，      (2.23c) 
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δ

   .      (2.23d) 

Comparison of these equations with market equilibrium conditions in section 1 shows 
that the optimal solution exactly coincides with the market allocation of a closed city.  
(2.23d) shows that the reciprocal of the social value of the numeraire is equal to the 
average of reciprocals of marginal utilities of income. 

 

2.2  A Small and Open City 

In a small, open city it is meaningless to maximize the utility level of city 
residents because the level is determined independently of the allocation within the city.  
Under some circumstances, however, maximizing the net product of the city may be of 
interest: a mining company, for example, building a townsite on its own land would 
maximize the total product of the city minus the cost of maintaining the utility level 
required to attract a work force.  The profit for such a producer would be 

∫∫ ++−
x

a
x

dxxRxNxtxzdxxNF
00

)]()())()([()( θ  （2.24） 

Labour costs do not include the land rent that workers pay since it is paid to the 
company. 

The net product (2.24) is maximized under the land constraint (2.3) and the utility 
constraint, 

uxhxzu =))(),((         .0 xx ≤≤    (2.25) 

where u  is the exogenously given utility level.  Note that since the population of the 
city is a choice variable in an open city, the population constraint can be ignored. 

The Lagrangian for this problem is 
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 (2.26) 

The first order conditions become, after simple manipulations,  

   ,)(xRuzh =u        ,0 xx ≤≤   (2.27a) 

     ,)()()()( xtxhxRxzF ++=′ .0 xx ≤≤   (2.27b) 

Considering  as land rent, we can observe that these optimality conditions 
coincide exactly with the market equilibrium conditions of the absentee-landlord case of 
the open city if workers earn wages equal to the value of marginal productivity of labor.  

)(xR
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Thus the market equilibrium is the optimal solution in this case as well. 

Notes 

The theory of residential land use which is described in this chapter was first 
established by Alonso (1964) following the pioneering work of Wingo (1961).  Many 
urban economists have extended Alonso's framework.  Extensive empirical research 
has also been carried out.  These efforts have culminated in Muth (1969) and Mills 
(1972a,b). 

The indirect utility function approach adopted in this chapter was introduced into 
an urban residential land use model by Solow (1973).  This approach has proved to be 
very useful in deriving qualitative results. 

The single-center assumption was relaxed by Romanes (1976) and White (1976).  
In a two dimensional case, introduction of subcenters gives rise to complicated partial 
differential equations which are very difficult to analyze. 

More than one income class was introduced by Beckman (1969) and Solow 
(1973) among others.  Beckman considered the case of Pareto income distribution.  
Beckman's solution was not correct since, as pointed out by Montesano (1972), he 
ignored boundary conditions (among other things).  Our treatment of different income 
classes is based on Solow's.  Miyao (1975) analyzed the dynamic stability of 
boundaries between different income classes.  Empirical research on spatial residential 
patterns with several income classes was carried out by Wheaton (1977). 

Time costs of commuting were included in Alonso's original formulation, though 
later studies tend to ignore time costs by considering the pecuniary cost as a surrogate.  
As discussed in subsection 1.2, the inclusion of time costs tends to weaken the tendency 
of the richer households to live farther from the center since the rich's value of time is 
higher than the poor's, making commuting costs for the rich greater than for the poor. 

Models with durable housing stock were analyzed by Fujita (1976a,b), and Anas 
(1976).  Since dynamic aspects must be taken into account in this case, the analysis 
becomes much more complicated. 

Definitions of closed and open cities were introduced by Wheaton (1974) in his 
comparative static analysis. 

The Benthamite optimal city was first analyzed by Mirrlees (1972).  He 
discovered that utility levels are not equal at the Benthamite optimum.  Riley (1973), 
(1974) further analyzed this property using different social welfare functions.  The 
product of individual utilities was used in Riley (1973) as the social welfare function, 
and a general class of concave and additive social welfare functions in Riley (1974).  
He derived a result parallel to ours: when land is a normal good and when there is no 
preference for location per se, individuals further out will receive greater utility levels at 
the optimum.  Our illustration in Appendix I of the reason why unequal utility levels 
are obtained at the optimum is largely based on Arnott and Riley (1977) and Levhari, 
Oron and Pines (1978). 

The Rawlsian case was considered by Dixit (1973).  The method of maximizing 
the utility level under the constraint that the utility level be equal everywhere in the city 
was adopted by Oron, Pines and Sheshinski (1973). 
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