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CHAPTER V 

TRAFFIC CONGESTION AND LAND USE FOR 
TRANSPORTATION:  

THE SECOND BEST CITY1 

 
In the previous chapter we introduced traffic congestion and analyzed the 

optimum and market allocations.  With transportation congestion, an additional 
traveler imposes external costs on other travelers by slowing them down.  The optimal 
solution requires congestion tolls to "internalize" this externality.  It is, however, 
difficult to charge congestion tolls because of very high administrative costs.  In fact, 
there are very few roads where congestion tolls are levied and there is no city where 
congestion tolls are adopted in the whole city.  It is, therefore, very important to 
consider what can be done given the constraint that congestion tolls are not allowed. 

In the market city of the preceding chapter, we assumed that roads are built 
according to a naive benefit-cost criterion: the direct saving in transportation costs from 
widening the road is equated to the market land rent.  This benefit-cost criterion leads 
to a misallocation of land between transportation and residential uses since, given the 
absence of congestion tolls, the market rent does not correctly reflect the true  social 
scarcity of land. 

In this chapter we consider the second best problem, which is to optimize the 
allocation of land between roads and residence when congestion tolls are not levied.  
The benefit-cost criterion that must be adopted to achieve the second best allocation is 
more complicated than the one in the optimum city or the market city.  The cost side 
must be the shadow rent, or the social rent, which is no longer equal to the market rent.  
The benefit side also differs from the marginal direct saving in transportation cost 
(unless compensated demand for land is completely price or rent ine lastic).  The 
reason is as follows.  A reduction of transportation costs from widening the road 
induces a change in the market rent.  If demand for land is responsive to a price 
change, this has a side effect of changing the consumption decisions of households.  
As shown in the previous chapter, the social value of the change is zero due to the 
envelope property if the market rent equals the social rent.  In the second best city, 
however, the market rent is not equal to the social rent, and a change in the consumption 
decision results in a net social gain or loss.  The loss or gain is the difference between 
the social benefit and the marginal reduction in transportation costs. 

Since the naive benefit-cost criterion usually adopted by policy makers leads to a 
suboptimal allocation of land, it is of interest to know the direction of the misallocation, 
that is, whether there is overinvestment or underinvestment in roads.  The direction of 
                                                 
1 This chapter is based on my  1977 paper in the Journal of Urban Economics.  I would like to thank 
Academic Press, Inc. for permitting me to include an extended version of the paper in this book. 
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misallocation may be determined by comparing the market city with the second best 
city, but the second best city is, unfortunately, so complicated that we have not been 
able to carry out the comparison directly.  We therefore examine the direction of a 
change that the naive benefit-cost criterion suggests at the second best optimum.  More 
specifically, we compare the marginal saving in transportation costs and the market rent 
when roads are built in the second best way. 

This comparison yields unambiguous results only if the benefit-cost criterion is 
adopted in a small region while the allocation in the rest of the city is held constant.  
The criterion leads to overinvestment in roads if the marginal saving in transportation 
costs is greater than the market rent at the second best optimum.  If, however, the 
criterion is adopted in the entire city, interrelationships among different locations 
introduce complicated reactions, and we cannot obtain a definite answer. 

In the second best city, the market rent at the edge of the city does not equal the 
rural rent although the shadow rent does.  This result is in sharp contrast to those 
obtained in the optimum and market cities.  The city must be expanded out to the 
radius where the contribution of an additional unit of land equals the rural rent.  This 
requires the shadow rent to be equal to the rural rent.  Since the market rent equals the 
shadow rent in the optimum city, the market rent also equals the rural rent at the edge of 
the city.  In the second best city, however, the market rent is no longer equal to the 
shadow rent and hence is not equal to the rural rent at the edge. 

Imposing another constraint that the market rent equals the rural rent at the edge 
of the city does not essentially change the situation.  It is always possible, for instance, 
to make the width of the road zero and transportation costs per mile infinite at the edge 
of the city.  This can cause a sudden drop in the market rent profile at the city's edge so 
that the market rent equals the rural rent after the drop and the constraint can be 
satisfied without changing the  allocation inside the city.  The only way to make the 
constraint significant is to restrict the shape of the road width functions, for example, to 
the class of linear functions as in Solow (1973). 

The case where compensated demand for land is completely price inelastic is 
peculiar in the following two respects.  First, the social marginal benefit of the road 
equals the direct marginal saving in transportation costs, since a change in rent caused 
by widening the road does not induce any change in consumption decision.  Second, 
the absolute level of the market rent is indeterminate as long as difference in rents at 
different locations is such that the utility levels are equal.  The second property 
mislead Solow and Vickrey (1971) and Kanemoto (1975) to conclude that the market 
rent is lower than the shadow rent everywhere in the city.  In this case, there is no need 
for a jump in the market rent to make the market rent equal to the rural rent at the edge 
of the city, since the level of the market rent is indeterminate.  This, coupled with the 
result that the slope of the shadow rent is steeper than that of the market rent, implies 
that the market rent is lower than the shadow rent everywhere in the city.  This result, 
however, is misleading since it does not carry over to the case where the elasticity is not 
zero even when the elasticity is extremely small. 

This chapter is organized as follows.  The model is set up in section 1.  Section 
2 is the largest section in this chapter and devoted to the case of a closed city.  The 
section is divided into three subsections: in subsection 2.1 the first order conditions for 
the second best optimum are derived and interpreted, in subsection 2.2 the benefit (the 
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direct marginal saving in transportation costs) and cost (the market rent) of the naive 
benefit-cost criterion based on market prices are compared at the second best optimum, 
and in subsection 2.3 the case of completely inelastic demand for land is considered.  
An open city is analyzed in section 3, and an economy consisting of many cities in 
section 4. 

1.  The Model 

In this chapter we make the same technological assumptions as in Chapter IV.  
The only difference lies in the nature of the optimization problem: in this chapter 
congestion tolls are not allowed but the width of the road is optimized, whereas in the 
optimum city both congestion tolls and the width of the road could be chosen, and in the 
market city congestion tolls were not allowed and the road was built according to the 
erroneous benefit-cost criterion based on market prices. 

Since congestion tolls are not allowed, households pay the private (or average) 
transportation cost, )(xt , defined by (IV.1.6) and (IV.1.7): 

 )),(),(()( xLxTgxt T=′     (1.1) 

 .0)0( =t         (1.2) 

If we denote the income of a household by y and the rent at x by )(xR , a 
household at x maximizes the utility function, )),(),(( xhxzu  under the budget 
constraint 

 ).()()()( xtxhxRxzy ++=      (1.3) 

Because of spatial arbitrage, the rent function, )(xR , must be such that the utility levels 
are equal everywhere in the city.  As in section I.1.1, all this information can be 
summarized in the bid rent function, 

 ),),(()( uxtyRxR −=  (1.4) 

which satisfies (I.1.14) and (I.1.15): 

 ),(/1)),(( xhuxtyRI =−  (1.5) 

 ),(/1)),(( xhvuxtyR IU −=−  (1.6) 

where u is the equal utility level.  Consumptions of the consumer good and housing are 
given by the compensated demand functions, 

 ),),(()( uxRzxz =  (1.7) 

 ),),(()( uxRhxh =           (1.8) 

which satisfy (I.1.19) and (I.1.20): 

 0)),(( ≥uxRzR ,      (1.9) 

 0)),(( ≤uxRhR .      (1.10) 

The volume of traffic at x, )(xT , satisfies (IV.1.9) and (IV.1.10): 
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 [ ],),),((/)()( uuxtyRhxLxT H −−=′  (1.11) 

 .0)( =xT  (1.12) 

The widths of the residential area and the road must satisfy the land constraint (IV.1.1): 

 )()()( xxLxL TH θ≤+ . (1.13) 

2.  A Closed City  

In a closed city the population of the city is fixed, which yields the boundary 
condition (IV.2.1) for )(xT  at 0=x : 

 .)0( PT =  (2.1) 

Using (1.4), (1.7), (1.8) and a different representation of transportation costs (tN instead 
of Tg), we can rewrite the resource constraint (IV.2.2) as 

 .)}()(
]),),(([

)(]),),(([
{

0
PwdxxRxL

uuxtyRh
xtuuxtyRzx

aH ≤+
−

+−
∫ θ  (2.2) 

2.1.  Derivation and Interpretation of First Order Conditions 

In the second best problem the distortion of relative prices caused by the absence 
of congestion tolls is taken as given.  The bid rent function (1.4) and demand 
functions, (1.7) and (1.8), of the consumer good and land capture the response of 
households to this distortion.  Thus the second best problem maximizes the sum of 
utilities, (IV.2.3), 

 ∫ −
x H dx

uuxtyRh
xuL

0
,

]),),(([
)(

 (2.3) 

under the constraints (1.1), (1.2), (1.11), (1.12), (1.13), (2.1), and (2.2).  There are two 
state variables in this problem: )(xt  and )(xT .  The control variables are )(xLH  
and ).(xLT   The control parameters are y, u, x , and )(xt . 

We assume that the market rent at the edge of the city, )(xR , is not restricted to 
equal the rural rent.  In this case, there is no constraint on )(xt .  The constraint on 
the market rent at the edge of the city does not cause any essential difference in the 
optimum allocation if we assume that transportation costs per mile become infinite, as 
the width of the road tends to zero.  Under this assumption it is possible to have the 
same allocation inside the city and at the same time to satisfy the constraint by causing a 
jump in the market rent.  Since the difference in allocation occurs only in an 
infinitesimal interval, this is possible without violating the resource constraint.  Thus 
the constraint on the market rent is superfluous. 

The Hamiltonian for the second best problem is 
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where )(xλ , )(xη , and δ  are respectively adjoint variables associated with (1.11), 
(1.1), and (2.2).  Forming the Lagrangian, 

  )]()()()[( xLxLxx TH −−+Φ=Ψ θµ , (2.5) 

where )(xµ  is the Lagrange multiplier for the constraint (1.13), we obtain the 
following necessary conditions for the optimum: 

 ),()( TT LTgx
T

ηλ =′−=
∂
Φ∂

,  (2.6) 
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 0),( =−=
∂

Ψ∂
µη TL

T
LTg

L
,  (2.9) 

where µ  and δ  satisfy 

 0)]()()()[( =−− xLxLxx THθµ ,                     0)( ≥xµ  (2.10) 

 ∫ =++−
x

aH dxRTghzLPw
0

0}][{ θδ ,                 0≥δ . (2.11) 

The transversality conditions for x , )(xt , u, and y are  

 
0))(),(()(

)()())]()(()([)(
=+

−+−−=Φ
xLxTgx

xRxNxtxzxux
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a

η
θδδλ

,     (2.12) 

 0)( =xη    (2.13) 

 ∫ =+−++−−−
x

uuRuuR dxzRzNhRh
h
N

tzuN
0

0]}[][)]([{ δδλ , (2.14) 

 ∫ =++−−
x

IRIR dxRNzRh
h
N

tzu
0

0})]({[ δδλ .        (2.15) 

For convenience, we divide the shadow prices, µηλ ,, , and the utility, u, by δ , 
and substitute the original notations for the variables obtained.  This operation converts 
the shadow prices from utility terms into pecuniary terms.  Substituting (2.8) into (2.7), 
and noting that the rent function and the compensated demand functions satisfy both 
(1.5) and 
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 0=+ RR zRh , 2  (2.16) 

we can rewrite (2.7) as 

 eN
R

R
Nx

−
−−=′−

µ
η )( ,  (2.17) 

where e is the price (rent) elasticity of compensated demand for land defined by 

 0≥−=
h

Rh
e R .    (2.18) 

The inequality is obtained because the substitution effect, Rh , is always nonpositive as 
in (1.10).  Notice that e is a function of R and u and hence in general varies over space. 

From (2.7), )(xη ′−  can be interpreted as the social benefit of a unit increase of 
the commuting costs, )(xt , of residents living at x.  When )(xt  increases by one unit, 
the total commuting costs are paid by )(xN  households who are living at x.  This is 
represented by the first term on the RHS of (2.17).  In addition to this direct effect, the 
increase of )(xt  has a side effect on the consumption decisions of households.  The 
market rent, )(xR , must fall to compensate the increase of the commuting costs, )(xt , 
which induces a change in consumptions of housing and the consumer good.  The 
second term on the RHS of (2.17) captures this indirect effect. 

By the envelope property the second term vanishes when the social rent is equal to 
the market rent.  The envelope property, (2.16), insures that, in the neighborhood of 
the equilibrium (or optimal) point, the changes in consumptions of the two goods 
evaluated at market prices counteract each other.  In the first best world, therefore, 
where market prices reflect social va lues, the social cost of a unit increase of )(xt  is 

)(xN . 

There is another case where the second term vanishes.  When housing demand is 
completely price inelastic, 0=e , the change of the rent does not affect the 
consumption decision.  Therefore, there is no side effect even when the social rent is 
different from the market rent.  This is also a first best situation because the decisions 
of households are not affected by the existence of congestion and the first best solution 
can be attained without congestion tolls. 

(2.17) shows that the adjustment of consumption has a socially desirable effect if 
R is greater than µ , which makes sense intuitively.  An increase in commuting costs, 

)(xt , lowers the market rent, )(xR .  When the market rent is higher than the social 
rent, a fall in the market rent brings it closer to the social rent, and the adjustment of 

                                                 
2 This can be shown as follows.  By the definition of compensated demand functions, ),( uRh  and 

),( uRz  must satisfy  
 [ ]),(),,( uRzuRhuu = , 
for any R.  Differentiating both sides with respect to R, we obtain 
 0=+ RzRh zuhu . 
Since Ruu zh = , this implies  
 0=+ RR zRh  . 
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consumption works in the socially desirable direction. 

Integrating (2.17) from x to x  and using the transversality condition (2.13), we 
obtain 

 ∫ ′−
−−=

x

x
xeNd

R
R

Tx
µ

η )( .   (2.19) 

Thus, )(xη−  is the social cost of increasing commuting costs of all households living 
between x and x  by one unit. 

Using this interpretation of )(xη , we can interpret )(xλ ′  in (2.6) as the social 
congestion cost due to a unit increase in traffic.  A unit increase in traffic between x 
and dxx +  causes more congestion there and raises transportation costs to pass 
through the ring by dxLTgT T ),( .  Since all households living beyond the ring must 
pass through the ring, the social cost of this increase in transportation costs is 
approximately dxxdxgx T )()( λη ′=− . 

From (2.8) and the budget constraint (1.3), we have  

 
)(

)(
)()(

xh
xyu

xRx
λ

µ
−−

+= , （2.20） 

where )(xµ  is the shadow rent of land at x and the right hand side is the marginal 
value of land in residential use.  The shadow rent differs from the market rent, and 
hence from the marginal rate of substitution between housing and the consumer good.  
The difference is caused by the second term on the right side, which reflects the 
congestion costs. 

From (2.9) the shadow rent )(xµ  also satisfies 

 ))(),(()()( xLxTgxx TLηµ = .     (2.21) 

The right side can be interpreted as the social marginal value of land in transportation 
use.  A marginal increase of land allocated to roads lowers transportation costs at the 
radius.  The social value of this decrease is given by the right side of (2.21). 

From (2.6) and (2.21), we obtain 

 ][)( LTTT gLTgLTx +−=−′ ηµλ , 

where, as shown in subsection 2.1 of Chapter IV, the square bracket on the right side is 
negative if transportation technology exhibits increasing returns to scale and positive in 
the case of decreasing returns.  Since Lg  is negative and )(xµ  is nonnegative, 
(2.21) implies that )(xη  is nonpositive.  Thus the following relationships hold 
between the total social congestion costs and the total shadow rent of roads at any 
radius: 

 

case. returns decreasing in the        
case returnsconstant  in the)()(

case returns increasing in the        

>
=′
<

TLxTx µλ  

  (2.22) 
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This result is more general than the condition obtained for the first best solution, where 
the relationship was expressed in terms of the actual congestion tolls and the road rent. 

Using (2.19), we can rewrite (2.21): 

 ∫ ′−
−=

x

xTL xeNd
R

R
LTgxBx

µ
µ ),()()( ,     (2.23) 

where 

 ),()( TL LTTgxB −≡    (2.24) 

is the marginal direct saving in transportation costs from widening the road as defined 
by (IV.2.20), and is sometimes called the market benefit.  The second term on the right 
of (2.23) represents the social cost of the adjustment in the consumption of land for 
housing, which is characteristic of the second best world. 

The naive benefit-cost criterion based on market prices cannot achieve the second 
best allocation of land.  Although the social marginal values of land in residential and 
transportation uses are equal at the second best optimum, the market rent of the 
residential land is not in general equal to the market benefit of the road, since the market 
values differ from the social values as shown in (2.20) and (2.23). 

It is easy to see that the transversality conditions, (2.12) and (2.13), imply that the 
shadow rent equals the rural rent at the edge of the city:3 

 aRx =)(µ .       (2.25) 

The transversality condition, (2.15), can be written more simply: 

 ∫ =
−x

eNdx
R

R
0

0
µ

.           (2.26) 

Though this equation is very important in deriving qualitative results (it is used in both 
Theorem 1 and Theorem 2 below), it is difficult to provide an interesting interpretation.  

(2.14) can be simplified by using uncompensated demand functions for land and 
for the consumer good, ),(ˆ RIh  and ),(ˆ RIz , defined in (I.1.5) and (I.1.6) respectively.  
Compensated and uncompensated demand functions satisfy the following relationships 
derived in (3.14) and (3.16) of Appendix III. 

 IIu hvh ˆ=  

 IIu zvz ˆ=  

 IRR hhhh ˆˆ −= . 

From these equations and (I.1.9), (1.6), and (2.16), (2.14) can be written 

 [ ]∫∫ −−=







−

x

I

Rx

I
dx

v
N

h
h

RNdx
v 00

ˆ11
µ

δ
.   (2.27) 

                                                 
3 In deriving this condition, we assumed that g is finite at  x .  It seems very unlikely that g  becomes 
infinite at x  because traffic is very light and available land is very large there. 
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This equation describes the relationship between the social value of the numeraire good 
)(δ  in utility terms and the marginal utility of income )( Iv .  When there is no 

congestion, the right side vanishes and we obtain (I.2.23d) which says that the averages 
of reciprocals of these two are equal.  When the shadow rent is not equal to the market 
rent, the reciprocal averages differ by the term on the right. 

From (2.20) and (2.23), the benefit-cost criterion that must be used to achieve the 
second best allocation differs from the naive one adopted in the optimum and market 
cities.  Unfortunately, it is not easy to calculate the correct benefit and cost.  We can 
express the difference, )(xr , between the shadow rent, which represents the correct 
social cost, and the market rent by 

 [ ] )(/)()()()( xhxyuxRxxr λµ −−=−≡ .     (2.28) 

The difficulty is that the values of u and )(xλ  are not directly observable.  The policy 
maker can, however, observe ),(),(),(),( xLxTxNxh T and )(xR  without too much 
difficulty, and can estimate, with some more difficulty, the compensated price elasticity, 

)(xe .  We therefore express )(xr  in terms of these variables.  From (2.6) and 
(2.19), )(xr  satisfies  

 )()()()( xhxrxhxr ′+′  

 ))(),(()()(
)(
)(

)( xLxTgxdxNxe
xR
xr

xT TT
x

x 







′′′

′
′

+= ∫ , (2.29) 

and from (2.26), 

 ∫ =
x

dxxNxe
xR
xr

0
0)()(

)(
)(

.      (2.30) 

The difference between the shadow rent and the market rent can be calculated by 
solving the differential equation (2.29) with the boundary condition (2.30).  Then the 
social marginal cost of widening the road is simply the sum of the difference, )(xr , and 
the market rent, )(xR .  Although it is not extremely difficult to solve the differential 
equation numerically in simple models like ours, the calculation is likely to be 
formidable in a more realistic model. 

Once the difference between the shadow rent and the market rent is obtained, the 
social benefit can be easily calculated from (2.23): 

 ∫ ′′′
′
′

−
x

xTL xdxNxe
xR
xr

LTgxB )()(
)(
)(

),()( . 

2.2.  Comparison of the Market Benefit and the Market Rent 

Having simplified and interpreted first order conditions, we can now proceed to 
examine the consequence of the benefit-cost analysis based on market prices.  Our 
ultimate goal is to compare the market benefit, )(xB , and the market rent, )(xR , at the 
second best optimum.  It is convenient to compare the social rent, )(xµ  , with each of 
these first. 
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In this subsection we consider the case where compensated demand for land is not 
completely price inelastic: .0>e  

The social rent is equal to the market rent in the optimum city with optimal 
congestion tolls.  If, however, congestion t tolls are not levied, the market rent diverges 
from the social rent.  Since transportation costs are lower than they should be,  

 
 

Households tend to locate too far from the CBD.  People seeking land farther 
from the center bid up the rent at larger radii, and the market rent tends to be flatter than 
the social rent.  The following Theorem shows that the market rent crosses the  social 
rent at some intermediate radius, and that the social rent must be higher than the market 
rent inside the radius and lower outside the radius.  This is illustrated in Figure 1. 

Theorem 1: If 0>e  for any radius, then there exists an x̂  strictly between 0 and x  
)ˆ0( xx <<  such that )ˆ()ˆ( xRx =µ , and 

 )()( xRx >µ                 for   xx ˆ0 <≤ , 

 )()( xRx <µ                 for   xxx ≤<ˆ . 

 

Proof:  
From (2.26) and 0>e , it is impossible to have )()( xRx >µ  for all x or 

)()( xRx <µ  for all x.  Since both )(xµ  and )(xR  are continuous, they must cross 
somewhere: there exists an x̂ , xx<< ˆ0 , where )ˆ()ˆ( xRx =µ .  From (2.20), at this 
point )(xλ  satisfies 

 yux −=)ˆ(λ . 

From (2.6), (2.9), (2.10), (IV.1.3), and (IV.1.4), we obtain 

 0/)( >−=′ LT ggx µλ . 
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This inequality is strict at x̂  since 0)ˆ()ˆ( >>= aRxRxµ .  Hence we obtain the 
following inequalities: 

 yux −<)(λ    xx ˆ<  

 yux −>)(λ   xx <ˆ . 

From (2.20), these inequalities imply 

 )()( xRx >µ   xx ˆ<  

 )()( xRx <µ   xx <ˆ , 

which in turn implies that x̂  must be strictly between 0 and x̂  to satisfy (2.26). 

  Q.E.D. 

We next compare the market benefit and the social rent.  The next Theorem 
shows that they are equal at 0=x  and that the market benefit is greater than the social 
rent in the rest of the city.  Thus the market benefit overestimates the true social 
benefit.  This is illustrated in Figure 2. 

The result can be understood intuitively as follows.  Recall that the difference 
between the market benefit and the social rent is the social value of the adjustment of 
consumptions in response to a decrease in transportation costs.  First, consider the 
social value of the adjustment caused by a transportation improvement at 0=x .  The 
improvement reduces commuting costs for all households by the same amount, which is 
equivalent to  

 

 
an increase in the income, y, of every household in the city.  Since y is optimally 
chosen, the change in the utility level caused by an infinitesimal increase in y is zero.  
The social value of the consumption adjustment is, therefore, zero for an improvement 
at 0=x . 

Next, consider an improvement at any radius x beyond x̂  in Theorem 1.  This 
decreases commuting costs of households living farther than x and raises the market rent 
there.  Since the social rent is lower than the market rent beyond x̂ , this works in a 
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socially undesirable direction and causes a social loss.  Thus the social benefit (and 
hence the social rent) is less than the market benefit at any radius beyond x̂ . 

An improvement inside x̂  benefits both households living outside x̂  and inside 
x̂ .  The consumption adjustments of households outside x̂  cause social losses for the 
same reason as above, but those of households inside x̂  are socially beneficial since 
the social rent is higher than the market rent there.  The next Theorem shows, 
however, that the former is always greater than the latter except for an improvement at 

0=x  in which case the two are equal. 

 

Theorem 2: If 0>e  for any x, then we obtain 

 )0()0( B=µ   

and 

 )()( xBx <µ ,                for    xx<<0 . 

Proof:  

We first show that for any x strictly between 0 and x , 

 ∫ <′−x

x
xeNd

R
R

0
µ

. 

For x greater than or equal to x̂ , this can be immediately obtained since 
)()( xRx <µ  from Theorem 1.  For x less than x̂  this is obtained from 

 ∫∫ <′−
−=′− xx

x
xeNd

R
R

xeNd
R

R
0

.0
µµ

 

Hence (2.23) yields 

 )()( xBx <µ                       xx <<0 . 

At 0=x , the following equality is obtained: 

 ∫
−

−=
x

TL eNdx
R

R
LTgB

0
))0(),0(()0()0(

µ
µ  

 )0(B= , 

where the second equality is obtained from (2.26), since Lg  can be seen to be finite at 
0=x . 

At xx = , however Lg  becomes infinite and we must use L’Hôpital’s Rule to 
obtain 
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where the first equality is obtained from (2.9), the second equality by L’Hôpital’s Rule, 
the third equality from (2.17), and the inequality from aRxxR => )()( µ  and the 
elementary result that the limit must be nonpositive when it is approached through 
nonpositive values.  From (2.23) this implies 

 )()( xBx <µ  

  Q.E.D. 

 

Combining Theorems 1 and 2, we can immediately see that the market benefit is 
greater than the market rent near the center.  However, it is not clear whether or not 
this remains to be true when we move farther from the center.  The next proposition 
throws a light on this question. 

 

Proposition 1: If the compensated demand for land is not completely price inelastic 
)0( >e , then the market benefit is always greater than the market rent near the CBD. 

Near the edge of the city, however, the market benefit is smaller than the market rent if 
the price elasticity is less than one, and is greater than the market rent if the elasticity is 
greater than one. 

Proof:  

The first half is immediately obtained from Theorem 1 and 2. 

From the proof of Theorem 2, we obtain 

 )()()()( xBRRxRxBxR aa −+−=−  
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Noting that the denominator and the square bracket of the numerator are both positive, 
we get 
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  Q.E.D. 
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Figure 3 illustrates the relationship between the market benefit and the market rent 
in the case of price inelastic demand for land: the market benefit is greater than the 
market rent near the center of the city, but drops below it near the edge.  As a result, 
the naive benefit-cost criterion has a tendency to overinvest in roads near the center and 
to underinvest near the edge.  When demand for land is price elastic as in Figure 4, the 
benefit-cost criterion tends to overinvest in roads both near the center and near the edge 
of the city4. 

   

Since the Cobb-Douglas type utility function (IV.2.27) has the elasticity α−1 , 
which is always less than 1, there is a tendency in that case to overinvest in roads near 
the center and to underinvest near the edge. 

The conclusion depends on the elasticity of demand for land since difference 
between the market benefit and the social rent reflects the side effect due to the change 
of housing consumption, and the change of housing consumption is greater when the 
elasticity is bigger. 

Notice that since these results are valid only in the neighbourhood of the second 
best solution, we do not have a definite answer as to whether the second best solution 
has a wider road than the market solution. 

When the naive benefit-cost analysis based on market prices is adopted only in a 
small ring at x, and roads are built in other parts of the city to achieve the second best 
allocation, the above comparison between two equilibria is valid.  If, for example, the 
market benefit is greater than the market rent in the ring between x and dxx + , the 
naive criterion calls for the road to be widened until the marginal market benefit of 
further widening falls to the market rent.  When the ring is very narrow the market rent 
is not significantly affected by a change in road width there, and the preceding 
conclusions hold. 

If, however, the naive benefit-cost criterion is adopted in the entire city, this 

                                                 

4 Note that the case where )(xB  is lower than )(xR  somewhere in the middle of the city is not 
excluded. 
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argument cannot be applied because the market rent curve changes.  Widening of the 
road in the rest of the city might cause such a rise in market rent at some locations that, 
even though the market rent at the second-best allocation was below the market benefit, 
the road might become narrower as a result of changes elsewhere. 

Furthermore, since the market rent is higher than the rural rent at the edge of the 
city, the city tends to expand.  This causes another tendency toward overinvestment in 
roads.  The reader may think that this effect would not appear if the second best 
problem were solved with the additional constraint that the market rent equal the rural 
rent at the edge of the city.  In our model, however, under the reasonable assumption 
that transportation costs per mile, ),( TLTg , are infinite when the width of the road is 
zero, the constraint is superfluous and the effect does not disappear. 

The constraint on the market rent at the boundary,  

 aRuxtyR =− )),(( ,     (2.28) 

would restrict y, )(xt , and u to a hypersurface.  The optimum allocation for the 
problem with this additional constraint is essentially the same as that for the problem 
without the constraint: the allocation is exactly the same within the boundary x , and 

),( TLTg is made infinite at x  causing a jump in )(xt  of an appropriate size to satisfy 
the constraint (2.28).  Since the jump which occurs in an infinitesimally small interval 
does not involve a finite social cost, the same maximum without the constraint is 
attained.5 

Now, we briefly consider the possibility that )(xt  has jumps even without the 
constraint (2.28).  In such a case the usual maximum principle like the Theorem of 
Hestenes in Appendix IV cannot be applied since it assumes that state variables are 
continuous.  Kanemoto (1977b) analyzed the case by considering the problem with an 
upper bound on ),( TLTg  and letting the upper bound tend to infinity. 

The following argument shows that a jump in )(xt  is indeed possible.  Equation 
(2.21) suggests that )(xη  must be nonpositive, since )(xµ  is nonnegative.  There is 
no guarantee, however, that )(xη  is nonpositive since )(xη  must also satisfy (2.19).  
If compensated demand for housing is sufficiently price elastic, the indirect benefit from 
increasing transportation costs (the second term on the right side of (2.19)) may 
overwhelm the direct cost (-T), in which case )(xη  becomes positive.  Then the 
necessary conditions for the optimum involve contradiction, which suggests that the 
maximum does not exist within the range of functions assumed by the maximum 
principle. 

In order to show that such a case can occur, we rewrite (2.19) as 

 ∫ ′



 −

+−=
x

x
xNde

R
R

x
µ

η 1)( . 

                                                 
5 It can be shown that, if g is infinite when TL  is zero, then a jump in )(xt  may occurs at x .  See 
Kanemoto (1977b).   Although the proof there has a minor error, the conclusion can be easily seen to be 
correct. 
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This equation shows that, if [ ]aRxRxRxe −> )(/)()( , )(xη  is positive near x .  In 
particular, if 0=aR  and 1)( >xe , then )(xη  is positive.  There certainly exists a 
well-behaved utility function whose compensated demand function is price elastic. 

In Kanemoto (1977b) it was shown that, if ),( TLTg  tends to infinity as traffic 
density, TLT , approaches infinity, a jump in )(xt  occurs at a point where )(xη  is 
positive.  Theorem 1 remains valid even when a jump occurs.  Theorem 2 and 
Proposition 1 are also valid if aR  and )(xR  are replaced by the left side limits, 

 )(
lim

)( x
xx

x µµ
↑

= , 

 )(
lim

)( xR
xx

xR
↑

= . 

If g remains finite even when TLT  approaches infinity, TL  becomes zero for a 
finite length.  It can be easily seen that if the upper bound for g is sufficiently large, the 
same results are obtained. 

2.3.  Completely Price Inelastic Demand for Land 

Next, consider the case where the compensated demand for land is completely 
price inelastic: 0=e  for any u and R.  This case is obtained, for example, if the utility 
function is a Leontief type, so that land and the consumer good are always consumed in 
fixed proportions. 

As we mentioned in subsection 2.1, the side effect due to the adjustment of 
consumption decisions vanishes in this case, 

 )()( xTx −=η , 

and the market benefit coincides with the social rent, 

 )()( xBx =µ ,            xx<<0 . 

Since (2.26) is satisfied at all levels of )(xR , the level of )(xR  is indeterminate.  
This can be understood as follows.  Suppose that the optimum is obtained by the rent 
function, )(* xR .  Consider the effect of raising the rent function by an arbitrary 
amount c everywhere in the city.  Since the utility level cannot be higher than the 
optimal level, if we can show that the optimal utility level is attained even when the 
market rent is cxR +)(* , we can conclude that the market rent is indeterminate at the 
optimum. 

When the utility level is given, the assumption of completely inelastic demand 
implies that lot sizes are constant regardless of the market rent.  This has two 
implications: the lot size is the same everywhere in the city, and it does not change 
when the rent profile rises to cxR +)(* .  In our model differential rent is returned to 
residents as an equal subsidy, so the income of households rises by ch*, where h* is the 
optimal lot size.  Households, therefore, can afford the optimal bundle at the higher 
rent level, and the optimum utility level is attained with the new market rent profile, 
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cxR +)(* .  The market rent is thus indeterminate if 0=e . 

One important implication of this indeterminacy is that the optimal solution can 
be achieved without having a jump in the rent function even if we add the constraint 
that the market rent be equal to the rural rent at the boundary.  After solving for the 
optimal allocation without the constraint, we simply lower the market rent curve until 
the rent at the boundary equals the rural rent.  This observation yields the following 
proposition which is the result obtained by Solow and Vickrey (1971), and Kanemoto 
(1975). 

 

Proposition 2: If the compensated demand for land is completely price inelastic, and if 
the market rent equals the rural rent at the edge of the city, then at the optimum the 
market benefit equals the market rent at the edge of the city and is greater in the rest of 
the city. 

 

This proposition is illustrated in Figure 5.  Note that the second best optimum 
coincides with the first best optimum, since, when demand for land is completely price 
inelastic, the only difference between them is the market rent that does not affect 
consumption decisions of households. 

 

The proposition suggests that there is a strong tendency towards overinvestment  
in roads when 0=e .  Considering the results obtained in the preceding section,  
however, the proposition is somewhat misleading.  As long as compensated demand 
for land is not completely price inelastic, the market rent is not indeterminate and we 
obtain a situation like the one depicted in Figure 1, where the social rent is higher than 
the market rent near the center and lower near the edge.  Although the market benefit 
approaches the social rent as the elasticity tends to zero, the relationship between the 
market rent and the social rent remains basically the same as long as the elasticity is 
positive, since (2.26) is effective even when the elasticity is very small.  How the 
relationship among the market rent, the social rent, and the market benefit changes as 
the elasticity becomes smaller is illustrated in Figure 6.  If the elasticity is greater than 
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1, the market benefit is greater than the market rent at the edge of the city, as in Figure 
6a (which reproduces Figure 4).  If the elasticity is between 0 and 1, the market benefit 
falls below the market rent but is still higher than the social rent at xx = , as in Figure 
6b (or Figure 3).  As the elasticity approaches zero, the market benefit tends to the 
social rent, but the market rent remains higher than the social rent at xx = .  In the 
limit we obtain the case, depicted in Figure 6c, in which the market benefit is less than 
the market rent near the edge of the city.  Thus Figure 5 and hence Proposition 2 
cannot approximate the case where the elasticity is close to, but not exactly, zero. 

 

 
 

The conclusion that the naive benefit-cost criterion has a tendency toward 
overinvestment is nevertheless correct, since the market city has a wider road than the 
optimum city, as shown in Kanemoto (1975).  The main reason is that at the second 
best optimum the market rent is higher than the rural rent at the edge of the city.  This 
tends to make the market city larger than the second best city.  In the models in Solow 
and Vickrey (1971) and Kanemoto (1975), where a fixed amount of land is required for 
nontransportation use, the city can grow only if the road is widened. 

3.  An Open City 

Next, consider an open and small city in which the utility level is given from 
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outside: uu = .  This time we consider the, absentee- landlord case.  The income of a 
household is given by the value of marginal productivity of labour: wy = .  These   
two conditions replace the population constraint (2.1) and the resource constraint (2.2) 
in a closed city.   

The bid rent function (1.4) and the compensated demand functions, (1.7) and 
(1.8), become   

 )),(()( uxtwRxR −= ,  (3.1) 

 )),(()( uxRzxz = , (3.2) 

 )),(()( uxRhxh = . (3.3) 

The net product of the city after the cost of maintaining the given utility level of 
residents, 

 [ ]{ }∫ −−−
x

a dxxRxNxtxzw
0

)()()()( θ ,    (3.4) 

is maximized.  The Hamiltonian and the Lagrangian for this problem are 
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 (3.5) 

and 

 [ ])()()()( xLxLxx TH−+Φ=Ψ θµ ,  (3.6) 

where )(xλ  and )(xη  are respectively the adjoint variables associated with (1.11) 
and (1.1), and )(xµ  is a Lagrange multiplier for (1.13). 

The control variables are )(xLH  and )(xLT , and the control parameters are x , 
)(xt  and )0(T .  We assume that a city planner can determine the boundary of the city 

regardless of the level of the market rent there.  Under this assumption there is no 
constraint on )(xt . 

The first order conditions are 

 )(/)()()( xhxxRx λµ −= ,    (3.7) 

 ∫ ′−
−=

x

xTL xeNd
R

R
LTgxBx

µ
µ ),()()( ,    (3.8) 

 LT ggx ′−=′ /)( µλ     (3.9) 

 0)0( =λ ,   (3.10) 

 aRx =)(µ ,   (3.11) 

where )(xB  is defined by (2.24), )(xµ  satisfies (2.10), and e is the price elasticity of 
compensated demand for land as defined by (2.18).  These conditions are similar to 
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those obtained for a closed city and have similar interpretations.6 

Calculations of the correct benefit and cost are the same as in the closed city 
except for the boundary conditions.  From (3.7) through (3.10), the difference between 
the shadow rent and the market rent, )(xr , satisfies the differential equation 

 ),()/()()()()( TLTTgxeNdRrTxhxrxhxr
x

x 



 ′+=′+′ ∫ ,      (3.12) 

with the boundary condition 

 .0)0( =r  

When this differential equation is solved, the social marginal cost of the road is given 
by )()( xRxr + , and the social marginal benefit is 

 ∫ ′−
x

xL xeNdRrgxB )/()( . 

Next, we compare the market benefit, )(xB , and the market rent, )(xR , at the 
second best optimum to see whether the naive benefit-cost criterion results in 
overinvestment in roads.  In order to do so, we first compare the market rent, )(xR , 
and the social rent, )(xµ .  Since congestion tolls are not imposed, the social 
transportation costs are greater than the private trans-portation costs.  The social rent, 
therefore, tends to be steeper than the market rent.  In the open city, however, both 
rents   are equal at the center by the transversality condition (3.10).  Thus the social 
rent is lower than the market rent everywhere   in the city except at the center where 
they are equal, and the following theorem is obtained.   

 

Theorem 3:  

 )0()0( R=µ , 

and 

 )()( xRx <µ ,                       xx<<0 . 

 

We omit the proof, which is quite simple.  Notice that this theorem holds even if 
the compensated demand for land is completely price inelastic. 

Next, we compare the market benefit and the social rent.  The market benefit 
differs from the social rent by the indirect effect through consumption decisions.  A 
reduction in transportation costs at a radius has a tendency to raise the market rent 
beyond that radius.  Since, by Theorem 3, the market rent is higher than the social rent, 
raising the market rent increases the gap.  The indirect effect of a reduction in 
transportation costs thus causes a social loss, and the social benefit is smaller than the 

                                                 
6 As in the closed city, )(xη  may become positive, and a jump in )(xt  may occur.  However, the 
following theorems and proposition hold even if )(xt  has a jump. 
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market benefit. 

 

Theorem 4: If e > 0 for all x, then 

 )()( xBx <µ ,                      xx<<0 . 

 

For xx < , the Theorem is immediately obtained from (3.8) and Theorem 3.  At 
xx = , spitaloHL '' )  rule yields the inequality as in the proof of Theorem 2. 

The above two theorems show that the market benefit is greater than the market 
rent at least near the center.  The naive benefit-cost analysis, therefore, has a tendency 
to overinvest in roads near the center.  The following proposition shows that this 
pattern is reversed near the edge of the city if the elasticity of demand for land is less 
than one. 

 

Proposition 3: Suppose the compensated demand for land is not completely price 
inelastic.  Then the market benefit is greater than the market rent near the center.  If, 
further, the price elasticity of compensated demand for land is less (greater) than one, 
the market benefit is smaller (greater) than the market rent near the edge of the city. 

 

The proof is the same as that of Proposition 1.  Figure 7 depicts the case of 
inelastic demand.  Figure 8 the case of elastic demand.  Notice that relative positions 
of the market benefit and the market rent are the same as in a closed city though their 
relationships with the social rent are different. 

 

 
 

In a closed city the market benefit equaled the social rent at the center, but in an open 
city the market benefit exceeds the social rent  everywhere.  In a closed city the market 
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rent crossed the social rent at some intermediate point, while in an open city the market 
rent is equal to the social rent at the center. 

 
 

When compensated demand for land is  completely price inelastic, the second term 
on the RHS of (3.8) vanishes.  The market benefit, therefore, coincides with the social 
rent and we obtain the following proposition which is illustrated in Figure 9. 

 

Proposition 4: If compensated demand for land is completely price inelastic, then the 
market benefit is equal to the market rent at the center and is smaller than the market 
rent in the rest of the city. 

 

Thus, in sharp contrast to Proposition 2 in a closed city, there is a tendency to 
underinvest in roads everywhere in the city.  Since the market rent is higher than the 
rural rent at the edge of the city, however, the market city tends to be bigger than the 
optimum city.  This increases the total population of the city and hence the total traffic, 
which works in the direction of widening the road.  In Kanemoto (1975), the road is 
shown to be wider in the market city than in the optimum city. 

 

4.  An Economy with Many Cities 

In this section we consider an economy consisting of many cities.  The model is 
the same as that in section 4 of the preceding chapter.  The population constraint is 

 cnPP ′=       (4.1) 

where P, cP , and n are respectively the population of the economy, the population of a 
city, and the number of cities.  The resource constraint is 
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The aggregate production function, )( cPF , has increasing returns to scale.  The 
boundary condition for )(xT  at 0=x  is 

 cPT =)0( .         (4.3) 

The common utility level is maximized under the constraints (1.1), (1.2), (1.11), 
(1.12), (1.13), (4.1), (4.2), and (4.3).  The control variables are )(xLH  and )(xLT , 
and the control parameters are cP , n, y, u, x , and )(xt .  The Hamiltonian for this 
problem is 
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and the Lagrangian is 

[ ])()()()( xLxLxx TH −−+Φ=Ψ θµ ,      (4.5) 

where )(xλ , )(xη , and δ  are adjoint variables associated with (1.11), (1.1), and 
(4.2) respectively, and )(xµ  is a Lagrange multiplier for (1.13). 

After dividing )0()( λλ −x , )(xη , and )(xµ  by δ  and denoting the obtained 
variables by )(xλ , )(xη , and )(xµ  respectively, the first order conditions become 
(2.19), (2.23), (2.25), (2.26), 

and  
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(4.6), (4.7), and (4.8) correspond to (2.6), (2.20), and (2.27).  As before, )(xη−  is the 
social cost of increasing commuting costs of all households passing through x by one 
unit.  Tgx)(η−  is, therefore, the social cost of an increase in congestion caused by a 
unit increase in the traffic at x, and )(xλ  is the social congestion costs that a resident 
at x imposes on other travelers by commuting from x to the center. 

Multiplying (4.7) by )()( xNxh  and integrating from 0 to x  yields 

 [ ]∫ +++=′
x

Hcc dxLNNtzPFP
0

)()( µλ . 

Comparing this equation with the resource constraint (4.2) and noting that the resource 
constraint holds with equality at the optimum, we obtain 
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x
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)()( θµλ .  (4.9) 

Thus the operating loss of a producer at the optimum equals the total social congestion 
costs, plus the total social rent of residential land, minus the total payment of the rural 
rent.  This is similar to the result obtained in the previous chapter: the operating loss of 
a firm equals the total congestion tolls, plus the total rent of residential land, minus the 
total payment of the rural rent.  The difference is that there are no tolls capturing the 
social congestion costs in this chapter and the social rent does not equal the market rent.  
It is quite natural that the same relationship holds for social values instead of market 
values. 

As shown in subsection 2.1, if we assume constant returns to scale in 
transportation technology, the social congestion costs equal the total shadow rent of 
roads at each radius: 

 )()()()( xLxxTx Tµλ =′ ,               xx<<0 . 

Then by integration by parts, (4.9) becomes 

 [ ] [ ]∫ −=′−−
x

accc dxxRxPFPPF
0

)()()()( θµ .   (4.10) 

This is again similar to the relationship obtained in Chapter IV.  The operating loss of 
a producer equals the difference between the total social rent and the total payment of 
the rural rent, where the total social rent includes the rent on the road.  Note that this 
relationship does not in general hold for the market rent, since (2.26) requires that the 
sums of the market and social rents be equal when they are weighted by eN/R which 
equals )(xθ  only by chance. 

It is easy to see that the social benefit and cost can be calculated exactly in the 
same way as in the closed city.  The relationships among the social rent, the market 
rent, and the market benefit are also the same as in the closed city. 

5.  Concluding Remarks 

The analysis in this and the preceding chapters are centered on the interaction 
between pricing of traffic congestion and the investment decision of roads.  If 
congestion is optimally priced, the investment decision is quite straightforward.  The 
allocation of land between roads and residence must be determined in such a way that 
the marginal social benefits of widening the road equals the marginal social cost at each 
radius.  The marginal social benefit at a radius is simply the marginal direct saving in 
transportation costs with the volume of traffic there fixed; the marginal social cost is the 
market rent of the residential land. 

This simplicity in the benefit-cost criterion is the general property of the first best 
world where all goods are priced properly.  Since all prices reflect the true social 
marginal values of the goods, prices may stand in for social values in the calculation of 
benefits and costs.  Thus the marginal social cost of widening the road is given by the 
market rent in our model. 

The fact that all prices reflect the social marginal values has another important 
implication.  When the road is widened, commuting costs decrease and hence the land 
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rent rises.  This induces a change in the allocation of the entire city through a change 
in the consumption bundles of households.  The change however, can be ignored in the 
calculation of the marginal benefit and cost.  The reason is that the social values of the 
induced change is zero, since the market value of the induced change is zero due to the 
envelope property, and the market value equals the social value when all prices equal 
the social marginal values.  This is the reason why the marginal social benefit equals 
the marginal direct saving in transportation costs with the fixed traffic volume. 

The simplicity disappears if traffic congestion is not properly priced.  Prices no 
longer reflect the marginal social values of goods accurately, and in particular, the 
market rent does not equal the social marginal value of residential land.  Accordingly, 
the cost side of the benefit-cost criterion must be changed.  The benefit side also 
becomes more complicated since the induced change in the consumption decisions has a 
nonzero social value or loss.  The naive benefit-cost analysis usually adopted by policy 
makers, therefore, gives rise to an inefficient land use. 

Unfortunately, the correct benefit-cost criterion is difficult to calculate.  
Furthermore, boundary conditions that must be used to calculate the benefit-cost 
criterion are different between closed and open cities.  The correct benefit cost 
criterion is, therefore, unlikely to be practical, at least until we know more.  
Meanwhile, it would be useful to know whether the naive benefit-cost analysis leads to 
too wide a road. 

The results in Chapter IV suggest that the road in the city with the naive 
benefit-cost analysis is usually wider than that it in the first best optimum where 
congestion tolls are levied and roads are optimally built.  This comparison, however, 
may not be useful, since it is difficult to levy congestion tolls because of very high 
administrative costs.  The analysis in this chapter is a partial attempt at the comparison 
with the second best optimum in which roads are built optimally under the cons traint 
that congestion tolls are impossible.  We compared the benefit and the cost in the 
erroneous benefit-cost criterion at the second best optimum and showed that the benefit 
exceeds the cost near the center and that the benefit exceeds the cost also near the edge 
in the case of price elastic demand for land and is less than the cost in the price inelastic 
case.  This implies that, if the erroneous benefit-cost criterion is adopted only in a very 
narrow ring near the center, overinvestment in roads will result.  If it is adopted near 
the edge underinvestment will result in the inelastic case and overinvestment in the 
elastic case. 

Unfortunately, the analysis is not conclusive if the erroneous benefit-cost criterion 
is adopted everywhere in the city.  It seems, however, more likely that the naive 
benefit-cost criterion leads to overinvestment in roads.  The major reason is that the 
market rent is higher than the rural rent at the second best optimum and the market city 
with the benefit-cost criterion tends to be bigger, which is made possible only by 
building wider roads and lowering commuting costs.  The results obtained in 
somewhat different models by Wheaton (1978), Pines and Sadka (1979), and Wan 
(1979) also support this conjecture. 

Notes 

The analysis in this chapter originates in Solow and Vickrey (1971).  They 
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formulated a transportation cost minimization problem in a long narrow city framework 
and asked the question whether or not the cost-benefit analysis based on the market rent 
yields too wide a road.  To see this, they compared the benefit from widening the road 
with the market rent at the optimum configuration. 

They, in effect, made the following three assumptions.  First, the city was 
assumed to be closed in the sense that the total production (or the total population when 
interpreted as a residential model) in the city was fixed.  Second, they assumed that 
only production required land, that production required only land, and that the price 
elasticity of demand for land was zero so that demand for space was not affected by the 
level of land rent.  Third, the market rent was constrained to be equal to the rural rent 
(in their case, zero rent) at the boundary of the city.  Their model, therefore, 
corresponds to the case of subsection 2.3 in this chapter.  Naturally, they obtained 
exactly the same conclusion as in Proposition 2 - that the benefit is greater than the 
market rent everywhere in the city - and concluded that the cost-benefit analysis based 
on market rent has a tendency to overinvest in roads. 

Kanemoto (1975) introduced an open city facing a given export price, and 
compared it with a closed city.  The model is essentially the same as the 
completely-price- inelastic case of the open city in this chapter.  The relationship 
between the market benefit and the market rent at the optimum allocation of land is the 
same as that in Proposition 4. 

Since these models assume completely price inelastic demand for land, the first 
best allocation coincides with the second best allocation.  The second best allocation 
differs from the first best allocation if substitution between land and other goods is 
possible.  Solow (1975) first considered this type of a second best problem in a spatial 
equilibrium framework.  He maximized the utility level of households within the class 
of linear road width functions in a closed city.  According to his numerical 
calculations, the market benefit from widening the road is greater than the market rent.  
He explained this result as follows.  Since congestion tolls are not levied, the market 
rent is flatter than the social rent.  But the two rents are equal to the rural rent at the 
edge of the city.  The market rent is therefore lower than the social rent, and the value 
of land is underestimated in the naive cost-benefit calculations. 

Our analysis indicates that this explanation fails to notice the following two 
aspects of the second best allocation.  First, though the social rent is steeper than the 
market rent, the two are not in general equal at the edge of the city.  Our analysis 
shows that the market rent is higher than the social rent at the edge of the city.  
Second, the market benefit from widening the road does not correctly reflect the social 
benefit.  The market benefit is greater than the social benefit because the adjustment of 
consumption caused by a decrease in transportation costs involves social costs when 
congestion tolls are not levied. 

Kanemoto (1976) considered a production city with substitutability between 
labour and land in an open city framework.  The results are parallel to those in section 
3.  The analysis of a closed city is based on Kanemoto (1977a). 

Wheaton (1978) considered a similar problem in a nonspatial framework with 
more than one type of roads.  He also analyzed the problem of finding the optimal 
uniform congestion tax which is constrained to have the same tax rate on all roads 
regardless of different degrees of congestion. 
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Arnott (1979) extended our analysis to the case where the road is of arbitrary 
width.  Arnott and MacKinnon (1978) obtained the numerical solution of using the 
fixed point algorithm.  Wan (1979) applied the perturbation method to the second best 
problem and also obtained numerical solutions. 

Pines and Sadka (1979) considered a discrete model in which a city is divided into 
two rings.  Assuming that the areas of the two rings are fixed, they showed that there is 
more investment in roads in the market city with the naive benefit-cost analysis than in 
the second best city. 
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