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CHAPTER VII 

OPTIMAL GROWTH OF CITIES 

There have been very few works on the mathematical theory of urban growth.  
Recently, however, this area has begun to attract the attention of theorists.  Miyao 

(1977a,b) analyzed capital accumulation in urban transportation.  Rabenau (1976) 

considered the optimal growth of a small and open factory town with durable housing 

stock.  Fujita (1976a,b) studied accumulation of more than one kind of durable 

housing capital.  These works, however, are concerned only with growth of a certain 
city, despite the fact that in a modern economy the migration of households and firms is 

not difficult.  Limiting the analysis to a single city prevents us from examining the 

interaction among cities.  Isard and Kanemoto (1976) made an attempt to consider the 

optimal growth of an economy consisting of many cities and their hinterlands, though 

the model there is too complicated to go beyond the derivation and interpretation of first 
order conditions.  This motivates the drastic simplifying assumptions of the model in 

this chapter. 

For the first time, productive capital appears in our economy.  Like capital in 

simple neoclassical growth models, it has a number of convenient features: it does not 

depreciate; it can be applied to any task; and if it is not needed for production, it can be 
eaten.  In addition, because we are considering an economy with many cities, we also 

require capital that can be moved between and within cities costlessly. 

The time dimension must be added to analyze capital accumulation.  Since we 

already have the spatial dimension, the model becomes quite complicated.  To keep 

the model manageable, we make the following drastic simplifying assumptions. 

a. The economy consists of cities only: there is no rural sector (except possibly for the 

constant rural rent). 

b. Capital accumulation occurs only in the urban production sector and there is no 

capital accumulation in the transportation sector.  

c. Capital is perfectly mobile: capital can be moved between an within cities 
instantaneously and without cost. 
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d. Households are perfectly mobile. 

e. All cities are identical.  This assumption can be made only when capital is 

perfectly mobile: otherwise, a new city has zero capital stock initially, and cannot 

be identical with older cities.  Under the assumption of mobility, capital stock in 

other cities can be instantaneously moved to the new city, and all cities can be 
made identical. 

We assume that there is a Marshallian externality of the sort discussed in Chapter 

II.  At the optimal city size declining production costs, which result from increasing 
city size, exactly match increasing transportation costs. 

The utility level that households achieve in our economy has been determined by 

the amounts of land and of the consumer good they received.  Now that the economy 

contains capital, some part of output can be invested in physical capital. 

The problem of determining the optimal path of our economy may be solved in 
two stages.  At each instant of time, all cities must maintain the optimal spatial 

allocation, as in Chapter I.  The key difference is that when there is capital, the 

optimization is performed using the part of the product allocated to current 

consumption, rather than the entire product.  The maximum utility level achievable in 
each city is then obtained as a function, ),( PcU , of current consumption, c, and the 

population of the city, P.  In section 1, the model from Chapter I is reformulated with 

capital, and in section 2 the static spatial optimum is derived given the level of 

consumption. 

At this point the inhabitants of each city know how to allocate their 
consumption, but not how much of their total product to consume.  We assume 

that they choose to maximize the undiscounted sum of utilities over an infinite time 

horizon.  That is, they are exactly as concerned about the welfare of their most 

remote descendants as they are about their own.  We chose this assumption mainly 

for the sake of simplicity, but also because we see no moral justification for 
discounting the welfare of future generations.  At any rate, it is quite easy to 

extend our analysis to the discounted case. 

In maximizing the undiscounted sum over an infinite time horizon, we encounter 
a well-known difficulty: the undiscounted sum of future utilities is infinite, and we are 

left attempting to compare infinities.  Economists have, of course, found several ways 

of avoiding this problem.  In this chapter, we adopt a version of the Ramsey device 

used by Koopmans  (1965).  This approach changes the origin of the instantaneous 
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utility function, taking the utility level of the optimal steady state as zero, where the 

optimal steady state, or the Golden Rule, is the balanced growth path which maximizes 
the utility level among all feasible balanced growth paths.  If )(xu  denotes the utility 

level at time t, and u* that at the optimal steady state, the sum of the difference over 

infinite time horizon, 

 ∫
∞

−
0

,*])([ dtutu  

is maximized.  The new objective function turns out to be bounded from above, and 

the difficulty of comparing infinities disappears.  In section 3, the objective function is 

maximized with respect to the paths of consumption and population of a city. 

In optimal growth theory, it is usually assumed that the utility function is concave.  
In our model, however, the maximum utility function, ),( PcU , may not be concave, 

although the original utility function over the consumer good and land is assumed to be 

concave.  As it turns out, the maximum utility function is not even quasi-concave in 

most cases.  This does not create serious difficulties for our analysis, if we assume that 

the concavity of the per capita production function is strong enough. 

In section 4, a phase diagram analysis is carried out to determine whether a city 
grows during the process of capital accumulation.  Section 5 contains remarks on the 

limitations of the model, and speculations on how the results might be modified if the 

model is extended. 

1.  The Model 

Consider the growth of an economy consisting of cities.  Let capital 
accumulation occur in the urban production sector and the number of cities change in 

the process of growth.  Assume there is no non-urban sector and the total population of 

the whole economy is partitioned into cities.  This assumption is clearly unrealistic and 

precludes the analysis of the evolution of an economy through different stages, for 

example, from the rural stage to the urban stage, as analyzed by Isard and Kanemoto 
(1976).  Considering the complexity of the problem and the dominance of the urban 

sector in a modern economy, however it seems worthwhile to start with this simple 

formulation. 

As discussed in Chapter II, economic factors which cause cities can be classified 

into three categories: concentration of immobile factors, increasing returns to scale, and 
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externalities.  In this chapter we consider cities based on a Marshallian externality of 

the kind analyzed in section 5 of Chapter II.  Instead of starting from the production 

function of an individual firm, we simply assume that the aggregate production function 

of a city can be written as 

 ),,,( PKPF    (1.1) 

where P and K are respectively the population and the aggregate capital stock of the 

city.  The production function is homogeneous of degree one with respect to the first 

two terms and the derivative with respect to the third term is positive.  The production 
function, therefore, exhibits increasing returns to scale if the third term is taken into 

account.1 

Because it is easier to work with the capital- labour ratio and consumption per 

capita, PKk /=  and c, than with the absolute quantities, we want a per capita 
production function ),( Pkf .  By the homogeneity assumption, the per capita 

production function is 

 ),,/,1(),,1(),( PPKFPkFPkf ==   (1.2) 

where 

 .0>Pf      (1.3) 

We assume that the per capita production function is strictly concave and 

 .0>kf     (1.4) 

As in previous chapters, we assume that all cities are identical.  If at time t the 

population of the whole economy is )(tP , the capital stock for the whole economy is 

)()()( tktPtK = , and per capita consumption of the produced good is )(tc , then the 

output available for capital accumulation after consumption is 

 ).()())(),(()()( tctPtPtkftPtk −=         (1.5) 

                                                 

1 It is not difficult to show that if an individual firm has a production function ),,(
~

Pkf l  where l  and 

k  are respectively labour and capital inputs, the aggregate production function can be written as (1.1) 

when the number of firms is optimal. 
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If we assume that the population growth rate is a constant 

 ),(/)( tPtP=λ      (1.6) 

then (1.5) can be rewritten as 

 ).()())(),(()( tctktPtkftk −−= λ&  (1.7) 

The spatial structure of a city is the same as in the previous chapters.  dxx)(θ  of 

land is available in the ring between x and dxx + , where x is the distance from the 
center of a city.  A household living at x at time t has a lot size ),( txh .  Then there 

are dxtxhx )),(/)((θ  households between x and dxx +  at time t.  A household at x at 

time t consumes ),( txz  of the produced good and spends )(xT  on commuting costs 

expressed in terms of the produced good.  For simplicity, we assume that there is no 

capital accumulation or no technological progress in the transportation sector.  Note 
that we have changed the notation for commuting costs and that t now denotes time.  A 
city uses )()( tPtc  of the produced good for consumption, which includes direct 
consumption, commuting costs, and the payment of the rural rent aR .  The resource 

constraint for a city is then 

 ∫ ++=
)(

0
,)(}),(/)](),({[)()(

tx
a dxxRtxhxTtxztPtc θ     (1.8) 

where )(tx  is the edge of the city at time t. 

The population constraints are 

 [ ]∫=
)(

0
,),(/)()(

tx
dxtxhxtP θ        (1.9) 

and 

 ),()()( tPtntP =     (1.10) 

where )(tn  is the number of cities at time t.  We shall ignore the constraint that )(tn  

be an integer and take )(tn  as a continuous variable. 

The utility function is ),( hzu , and we impose the constraint that the utility level 

be equal everywhere at each instant of time.  The utility level may vary over time.  



Optimal Growth 

152 

The equal-utility constraint can be written 

 [ ].),(),,()( txhtxzutu =    (1.11) 

Having set up the model, our problem is to maximize the undiscounted sum 
over an infinite time horizon: 

 [ ]∫
∞

−
0

,*)( dtutu    (1.12) 

subject to the constraints (1.7) through (1.11), and the initial condition, 

 0)0( kk = ,    (1.13) 

where u* is the utility level in the optimal steady state.  The problem is solved in 

two stages. 

2.  Optimal Spatial Structure 

In this section the first stage optimization is carried out for given )(tc  and )(tP , 
and the properties of the maximum utility function ))(),(( tPtcU  are examined.  This 

problem is exactly the same as the one in subsection 2.1 of Chapter I if we substitute 
)(tc , )(tP , and )(xT  for w, P, and )(xt .  The utility level is maximized under the 

resource constraint, the population constraint, and the equal-utility constraint, which are 
in this case, (1.8), (1.9), and (1.11) respectively.  Control variables are )(xz  and 

)(xh , and control parameters are x  and u.  The time variable t is suppressed in this 

section, since it plays no role in the optimization. 

The first order conditions can be rewritten 

 ),())(),((/))(),(( xRxhxzuxhxzu zh =    (2.la) 

 ),()()()( xTxhxRxzy ++=   (2.1b) 

 ,)( aRxR =     (2.1c) 

after simple manipulations.  As in Chapter I, the optimal solution can be achieved as a 

competitive equilibrium if all households receive the same income y.  The solution, 
therefore, can be described by using the bid rent function )),(()),(( uxTyRuxIR −=  

defined in Equation (1.12) of Chapter I: 

 scy += ,    (2.2a) 
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 [ ]∫ −−=
x

a dxxRuxTyRsP
0

,)()),(( θ      (2.2b) 

 ∫ −=
x

I dxxuxTyRP
0

,)()),(( θ      (2.2c) 

 .)),(( aRuxtyR =−    (2.2d) 

s is the social dividend each household receives and is equal to the total differential rent 

divided by the population of the city.  (2.2a) and (2.2b) correspond to (1.28) in Chapter 
I.  (2.2c) is a restatement of the population constraint using the property of the bid rent 
function: hRI /1= . 

If c and P are given, the four equations, (2.2a)-(2.2d), determine the four 

variables, y, s, x , and u.  The utility level which is obtained can then be written as a 
function ),( PcU  Total differentiation of (2.2) yields the partial derivatives of the 

maximum utility function: 

 ∫ <=
x

uP dxxRsPcU
0

,0)(/),( θ          (2.3) 

 ∫ >−=
x

uc dxxRPPcU
0

,0)(/),( θ           (2.4) 

where subscripts P and c denote partial derivatives with respect to P and c respectively.  

Thus an increase in the population of a city, given the consumption of resources per 
capita, lowers the utility level which can be attained in the city.  An increase in per 

capita consumption given the population raises the utility level.  The marginal rate of 

substitution between P and c is equal to the negative of the social dividend divided by 

the population: 

 ./),(/),(),( PsPcUPcUPcS cP −=≡       (2.5) 

Further properties of the maximum utility function are difficult to derive in the 

general case.  The following results for four cases have been obtained by tedious 

calculations.  The cases are 

(i) the Leontief utility function [ ] 1,),/min(),( /1 >= γα γhzhzu , in a linear city, 

θθ =)(x ;  

(ii) the Leontief utility function in a pie-slice city, xx θθ =)( ;  
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(iii) the Cobb-Douglas utility function γαα /11 )(),( −= hzhzu , 1>γ , in a linear 

city; and 

(iv) the Cobb-Douglas utility function in a pie-slice city. 

 

In all cases, linear commuting costs are assumed: .)( TxxT =  The results are 

(1) ccU  is negative in the linear city cases (i) and (iii). 

In circular cities (ii) and (iv), ccU  is positive if γ  is close to 1 and is negative 

for a large enough γ  (in case (iv) we have proven this only in the case 0=aR ). 

(2) PPU  is positive in all cases (in the Cobb-Douglas cases we have proven this only 
in the case of 0=aR ).  This shows that ),( PcU  is not concave. 

(3) ),( PcU  is not usually quasi-concave.  In order for U to be quasi-concave, 
222 cPPPccPccP UUUUUUU −−=∆  must be nonnegative.  In the case of the 

Leontief utility function, ∆  equals zero in a linear city, and ∆  is negative if 
xTc >  in a circular city.  In the Cobb-Douglas case, ∆  is negative in a linear 

city and in the case of 0=aR  in a circular city. 

(4) ),( PcSc  is negative in all cases.  This implies that -P would be a normal good 

if ),( PcU  were quasi-concave.  (Note that P is a 'bad' and hence P−  is a 

good.) 

(5) ),( PcSP  is positive in all cases (in case (iv) we have proven this only in the case 
of 0=aR ).  This implies that c would be an inferior good if ),( PcU  were 

quasi-concave. 

 

These results show that even if the original utility function ),( hzu  is concave, 
the maximum utility function ),( PcU  is not usually well behaved: ),( PcU  is usually 

neither concave nor quasi-concave.  As it turns out, however, this does not cause a 

serious difficulty in the second stage optimization if the concavity of the production 

function (1.2) is strong enough. 

3.  Optimal Growth of Cities 

In the second stage of our optimization procedure, the undiscounted sum over 

an infinite time horizon, 
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 [ ] ,*))(),((
0

dtutPtcU∫
∞

−     (3.1) 

is maximized subject to (1.7), (1.10), and (1.13).  ),( PcU  is the maximized utility 

level from section 2 and u* is the utility level at the optimal steady state.  Since 
)(tn  appears only in the constraint (1.10) and is taken as a continuous variable, the 

problem is equivalent to the one of maximizing (3.1) under the constraints (1.7) and 
(1.13) with respect to )(tc  and )(tP .  Although the population of a city )(tP  

must be greater than one, we ignore this constraint, assuming that it is always satisfied 

along the optimal path. 

Before solving this problem, we first examine the optimal steady state, at which 
the utility level is maximized among all feasible steady states.  The optimal steady 

state is therefore the solution to the problem of maximizing 

 ),( PcU  

subject to 

 ,0),( =−− ckPkf λ        (3.2) 

with respect to c, P, and k. 

First order conditions for an interior optimum are 

 ,),( λ=Pkf k       (3.3a) 

 0),(
),(
),(

=+ Pkf
PcU
PcU

P
c

P .  (3.3b) 

The first equation is the usual condition that the system operate at the biological rate of 

interest: the marginal productivity of capital must equal the population growth rate.  

The second equation requires that the population of a city be determined so that the per 
capita marginal external benefit on the production side equals the marginal rate of 

substitution between population and resource consumption per capita.  From (2.5) and 

(2.2b), this is equivalent to 

 [ ] [ ]∫ −=
x

aP dxxRxRPkPfP
0

,)()(),( θ  (3.4) 

which may be interpreted as the condition obtained in Chapter II that the total 

differential rent equals the total Pigouvian subsidy.  An additional worker in a city 
produces ),( Pkf  of the product himself, but at the same time increases the population 
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of the city and raises the production of other workers by PPf .  The latter is the 

marginal external benefit, and the Pigouvian subsidy must equal PPf  to achieve an 

efficient allocation.  The left side of (3.4) is, therefore, the total amount of the 

Pigouvian subsidy in the city, which must equal the total differential rent when the 

number of cities is optimal. 

The second order conditions are as follows. 

 ,0≤kkf        (3.5a) 

 ,0/)( 2 ≤−+− kkkPPPcP fffSSS ･           (3.5b) 

where ),( PcS  is the marginal rate of substitution between P and c and is defined in 

(2.5).  The first two terms are 

 
[ ]

./

2
1

3

22
3

c

cPPPccPccP
c

cP

U

UUUUUUU
U

SSS

∆−≡

−−−=− ･
 

Since ),( PcU  is not usually quasi-concave as seen in section 2, cP SSS ･−  is usually 

positive.  kkkPPP fff /)( 2−  is, however, negative if ),( Pkf  is concave.  (3.5b) 

can, therefore, be satisfied if the concavity of the production function is strong enough.  

(3.5a) is satisfied because we assumed that the production function is concave.  We 
henceforth assume that (3.5a) and (3.5b) are satisfied with strict inequalities.  We also 

assume that the optimal steady state is unique. 

The following two observations can be immediately obtained from the first order 

conditions (3.3).  First, unlike usual one sector growth models, the optimal steady state 

depends on the shape of the utility function.  The population of a city serves as a link 
between the consumption side and the production side, and the capital- labour ratio at 

the optimal steady state is affected by the shape of the utility function.  Second, at the 

optimal steady state, the configuration of a city remains exactly the same, and the 

number of cities increases at the same rate as the population growth. 

Now, let us go back to the original problem of maximizing (3.1) with respect to 
)(tc  and )(tP  subject to (1.7) and (1.14).  As shown in section 2 of the appendix on 

optimal control, the Hamiltonian for this problem is 
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 [ ],)()())(),(()())(),(( tctktPtkftqtPtcU −−+=Φ λ      (3.6) 

where )(tq  is an adjoint variable associated with the constraint (1.7).  )(tq  satisfies 

the adjoint equation: 

 [ ],))(),(()()( λ−=− tPtkftqtq k&      (3.7) 

and the Hamiltonian must be maximized with respect to )(tc  and )(tP .  The first 

order conditions for the maximization are 

 ),())(),(( tqtPtcUc =    (3.8a) 

 ,0))(),(()())(),(( =+ tPtkftqtPtcU PP   (3.8b) 

and the second order conditions are 

 ,0≤ccU       (3.9a) 

 ,0≤+ PPPP qfU     (3.9b) 

 .0)( 2 ≥+− PPcccPPPcc fqUUUU       (3.9c) 

As seen in section 2, (3.9a) is satisfied if the concavity of the original utility 
function ),( hzu  is strong enough.  For (3.9b) to be satisfied, PPf  must be negative 

and its absolute value must be greater than qUPP / , since PPU  is usually positive, and 

by (3.8a), q is also positive.  In (3.9c) the sum of the first two terms is usually 
negative.  Again, PPf  must be negative with a large absolute value. 

Combining (3.7) and (3.8a) yields the differential equation: 

 [ ],)()( kccPcc fUtPUtcU −=+ λ&&       (3.10) 

and from (3.8a) and (3.8b) we obtain 

 .0))(),(())(),(( =+ tPtkftPtcS P        (3.11) 

Using (2.5), (3.11) becomes 

 )).(),(()()( tPtkftPts P=        (3.12) 

Thus the social dividend equals the Pigouvian subsidy at each point of time along the 

optimal path.  In other words, the total amount of the Pigouvian subsidy for residents 
of the city must always equal the total differential rent. 
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Since there is no constraint on )(tk  at terminal time ∞=t , the transversality 

condition must be obtained to determine the value of )(tk  at ∞=t .  If we can show 

that the optimal path converges to the optimal steady state, the transversality condition 

must be 

 **)()(lim kqtktq
t

=
∞→

,      (3.13) 

where *),*,(* PcUq c=  and asterisks deno te the optimal steady 

state values of the variables. 

We prove that the optimal path converges to the optimal steady state in two 

steps.2  In the rest of this section, we show that the optimal path visits any 
arbitrarily small 

neighbourhood of the optimal steady state.  This result still allows the possibility that 

the optimal path enters a neighbourhood of the optimal steady state but leaves there 
eventually.  In the next section, we examine the behaviour of the optimal path near the 

steady state, and show that the steady state is a saddle point.  Since this means that all 

paths except the one which converges to the saddle point diverge, the only path that 

visits an arbitrarily small neighbourhood of the optimal steady state is the convergent 

one.  Thus the optimal path must converge to the optimal steady state, and (3.13) is in 
fact the required transversality condition. 

To establish that the optimal path must visit an arbitrary neighbourhood of the 

steady state, we observe that the Kuhn-Tucker Theorem shows that when the constraint 

qualification is satisfied3, there exists a multiplier q* such that the optimal steady state 
maximizes the Lagrangian 

 [ ].),(*),( ckPkfqPcU −−+ λ  

Thus the optimal steady state *)*,*,( Pck  satisfies 

                                                 

2 This approach is similar to the one used by Scheinkman (1976) in the discounted case with many 

stocks. 

3 See, for example, Mangasarian (1969).  See also section 3 in the appendix on optimal control theory 

for the explanation of constraint qualification. 
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[ ]

[ ] . and , ,any for ,),(*),(
***)*,(**)*,(

PckckPkfqPcU
ckPkfqPcU
−−+≥

−−+
λ

λ
 (3.14) 

It is not difficult to show that under some regularity conditions this inequality can be 

strengthened to the following: if ε>− *kk  for any positive  ε , then there exists 

0>ρ  such that 

 
[ ]
[ ] . and any  for ,),(*),(

***)*,(**)*,(*
PcckPkfqPcU

ckPkfqPcUu
ρλ

λ
+−−+>
−−+=

 (3.15) 

If a path does not visit an arbitrarily small neighbourhood of the optimal steady state, 

there exists some 0>ε  such that ε>− *)( ktk  for any t.  Inequality (3.15) then 

holds for any t and we can integrate it from  0  to ∞  to obtain 

 [ ] [ ]∫ ∫
∞ ∞

−−∞−<−
0 00 .)(**),( dtkkqdtuPcU ρ        (3.16) 

Since ,0)( ≥∞k  the right side of the inequality is minus infinity.  Thus the value of 

the criterion function of any path that does not visit an arbitrarily small neighbourhood 

of the optimal steady state is minus infinity. 

Now it is easy to construct feasible paths which have values of the criterion 
greater than ∞− .  For example, consider a path which approaches the optimal steady 

state with a constant )0(≠k&  and stops there.  Such a path always exists if the initial 

capital- labour ratio, 0k , is larger than k*, since we can determine )(tc  in such a way 

that )(tk&  is negative and constant until )(tk  reaches k*.  Even if the initial 

capital- labour ratio is smaller than k*, such a path exists as long as kPkf λ−− )(  is 
positive for any k between 0k  and k*. 

Since k&  is constant and is not equa l to zero, k* will be reached within a finite 
length of time.  The value of the criterion up to that time is then finite, and after that 
time the value can be made equal to zero by setting *)( ctc =  and *)( PtP = .  Thus 

there exists a feasible path with a finite value of the criterion, and any path that does not 
visit an arbitrarily small neighbourhood of the optimal steady state cannot be optimal. 
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4.  Phase Diagram Analysis 

Now we examine the local behaviour of the optimal path near the optimal steady 

state.  The optimal path satisfies differential equations (1.7) and (3.10), and equation 
(3.11) which must hold at each instant of time.  The dynamic system contains three 

variables: k, c, and P.  In order to work with a two-dimensional phase diagram, we use 
(3.11) to express c as a function, ),( Pkc , of k and P, and obtain differential equations 

of k and P.  Then implicit differentiation of (3.11) yields derivatives of ),( Pkc : 

 ,/),( cPkk SfPkc −=            (4.1) 

 ./)(),( cPPPPP SfSPkc +−=           (4.2) 

Observing 

 ,)( Pckctc Pk
&&& +=  

we can rewrite (3.10) as follows using (4.1), (4.2) and (1.7): 

 [ ] [ ]{ },),(),(),(),(),(
),(

1
)( PkckPkfPkPkfPk

PkD
tP k −−+−= λϕλφ&  (4.3) 

where 
 ,)(),( ccPPPPcc SUfSUPkD −+=     (4.4a) 

 ,),( ccSUPk −=φ       (4.4b) 
 .),( Pkcc fUPk −=ϕ     (4.4c) 

The differential equation (1.7) can also be rewritten using )),(),(()( tPtkctc =  

 ).,(),()( PkckPkftk −−= λ&           (4.5) 

(4.3) and (4.5) describe the paths that )(tk  and )(tP  must follow.  The optimal 

steady state is the rest point of (4.3) and (4.5) since (3.2), (3.3a), and (3.3b) hold at the 
rest point. 

To construct the phase diagram, we must know the signs of D, φ  and ϕ .  

By simple manipulations, D becomes as follows. 

 
[ ]

,0

/)(),( 2

≥

−+= ccPPPccPPcc UUUUfUPkD
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      (4.6) 

where the inequality is obtained from (3.8a) and (3.9c).  In order to determine the 
signs of φ  and ϕ , we assume 
 ,0≥Pkf          (4.7) 

 .0≤cS         (4.8) 

The first inequality implies that capital and population are complementary in production.   
As mentioned in section 2, the second inequality is satisfied in all the examples we have 
calculated.  Since 0≤ccU  from the second order condition (3.9a), φ  and ϕ  are 

both nonnegative under these assumptions: 
 ,0),( ≥Pkφ        (4.9) 
 .0),( ≥Pkϕ       (4.10) 

These assumptions also imply that 
 .0),( >Pkck        (4.11) 

We now construct the phase diagram of (4.3) and (4.5).  Following the usual 

procedure, we first examine the loci of 0=P&  and 0=k& .  The locus of 0=k&  is 
 ,0),(),( =−− PkckPkf λ     (4.12) 

and the slope of the locus is 

 .0
kk
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dP
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== λ
&      (4.13) 

Since by (3.3a) we have λ=kf  at the optimal steady state, the slope there is 
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  (4.14) 

 

The denominator is positive by (4.11).  By (4.2) the numerator is   

 [ ],1
cPPP

c
PP SSSf

S
cf ⋅−+=−  

which is also positive from (4.6), (3.5b) and the strict concavity of ),( Pkf .  Thus the 

0=k&  locus is upward sloping at the Golden Rule: 

 0
0

>
=kdP

dk
&                at   .λ=kf       (4.15) 

Since we have 
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 [ ] ,0),(),( >−=−−
∂
∂

PP cfPkckPkf
P

λ     (4.16) 

ckfk −−= λ&  is negative above the 0=k&  locus and positive below the locus as 

illustrated in Figure 1. 

 

Next, consider the locus of 0=P& .  From (4.3) it is a combination of the 0=k&  
locus and the locus of 

 .0),( =− Pkf kλ      (4.17) 

 

The slope of the locus of (4.17) is 

 ,0/ >−== kkkPkf
ff

dP
dk

λ      (4.18) 

where the inequality is the result of concavity and complementarity.  The locus of 

(4.17) is, therefore, upward sloping.  Since 
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kkk fPkf
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λ
 

kf−λ  is positive above the locus of kf=λ  and negative below the locus.  This is 

illustrated in Figure 2. 
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The locus of kf=λ  intersects with the 0=k&  locus at the Golden Rule.  The 

0=k&  locus is steeper than the locus of kf=λ  at the intersection point since the 

following inequality holds there: 
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    (4.20) 

where we used (3.5b) and (4.7).  Figure 3 illustrates the relationship between the two 
loci.  Since D, φ  and ϕ  are all nonnegative, the 0=P&  locus passes through 

regions (A) and (C) in Figure 3, and P&  is positive on the side of region (D).  There 
are three possibilities: 

(i) the 0=P&  locus is downward sloping, 

(ii) the 0=P&  locus is upward sloping but flatter than the kf=λ  locus, and 
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(iii) the 0=P&  locus is upward sloping and steeper than the 0=k&  locus. 

The slope of the 0=P&  locus is, at the Golden Rule, 
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and 
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These relationships imply that 

 

00 == > kP dP
dk

dP
dk

&&     if     22 ))(/())(/1( ccccPkkk SUUff −>−   (4.23) 
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 00 <=PdP
dk

&          if   22 ))(/())(/1( ccccPkkk SUUff −<−   (4.24) 

Thus case (i) is obtained if ,))(/())(/1( 22
ccccPkkk SUUff −<−  and case (iii) otherwise, 

but case (ii) never occurs. 

In case (i), we obtain a phase diagram depicted in Figure 4.  The optimal steady 

state is a saddle point and all paths except for the two stable branches diverge.  Since it 
was shown in the preceding section that the optimal path must visit any arbitrarily small 

neighbourhood of the optimal steady state, the optimal path must be one of the stable 

branches.  The diagram also shows that at least in the neighbourhood of the steady 

state the optimal path is either in the region where 0>k&  and 0<P&  or in the region 

where 0<k&  and 0<P& .  The population of a city therefore declines as capital 
accumulates.  Notice,  

 

 

however, that this conclusion may not hold globally as Figure 5 illustrates. 
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In case (iii), we obtain a phase diagram like Figure 6.  The optimal steady state is 

a saddle point in this case as well and the optimal solution is either of the stable 

branches.  It can be seen from the diagram that the population of a city rises as capital 

accumulates in the neighbourhood of the Golden Rule. 

 

 
 

These results are summarized in the following theorem:  

 

Theorem 1: Suppose 0≤cS and 0≥Pkf .  If 22 ))(/())(/1( ccccPkkk SUUff −<− , then 

the population of a city falls as capital accumulates in the neighbourhood of the optimal 
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steady state ; and if 22 ))(/())(/1( ccccPkkk SUUff −>− , then the population rises. 

 

The assumption of complementarity, 0≥Pkf , is rather arbitrary although the 

assumption is satisfied in most widely used production functions such as the 
Cobb-Douglas and CES functions.  If capital and population are anticomplementary, 

the following result is obtained. 

 

Theorem 2: Suppose 0≤cS and 0≤Pkf .  Then the population of a city falls as 

capital accumulates in the neighbourhood of the optimal steady state. 

 

Labour augmenting technical progress, or Harrod neutral technical progress, can 
be incorporated in this analysis quite easily although other types of technical progress 

are not easy to handle.  When the rate of labour augmenting technical progress is σ , 

the same result as in the case without the technical progress is obtained if λ  is 

replaced by σλ +  and P by the population in terms of efficiency labour, tPeQ σ= .  

Since P and Q have the relationship: 

 ,σ−=
Q
Q

P
P &&

      (4.25) 

the rate of increase of the population of a city is smaller by the technical progress rate 

than the case without the technical progress.  Thus labour augmenting technical 

progress introduces a tendency for city size to decline over time. 

The reason why the sign and the magnitude of Pkf , are crucial in Theorems 1 
and 2 must be obvious.  The population size is determined in such a way that 

0=+ PfS , i.e., the marginal cost of having a bigger population on the consumption 
side balances the marginal externality benefit on the production side.  If Pkf , is 
positive, an increase in the capital- labour ratio increases the marginal benefit and tends 
to increase the population of a city.  This tendency would be offset if the marginal cost 
on the consumption side rises.  As capital- labour ratio rises, per capita consumption 
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usually increases.  If cS  is nonpositive as assumed in the Theorems, the marginal cost 
2 also rises.  Theorem 1 states that when 2))(/( cccc SUU−  is greater than 

2))(/1( Pkkk ff− , this effect overwhelms the effect of the rise in the marginal benefit.  
If Pkf , is negative, both effects work in the same direction and the population of a city 
always declines in the process of capital accumulation as in Theorem 2. 

5.  Concluding Remarks 

We have characterized the condition required for capital accumulation to be 

accompanied by an increase in the population of a city.  It was shown that the 
population growth tends to occur if capital and the external economy are 

complementary in production and that the population tends to decline if the marginal 

rate of substitution between the population and consumption becomes greater in 

absolute value as the consumption increases.  It is believed that ordinary factors of 

production 

are usually complementary, although it is not clear whether this is true if there are 

externalities.  In examples that we have calculated, the marginal rate of substitution 

between the population of a city and consumption rises in absolute value as the 

consumption increases.  Empirical studies are therefore necessary to determine 

whether capital accumulation favours bigger cities. 

It is quite obvious that our model is too simple to capture the complexity of 

modern cities.  It does not deal with the following important aspects of real cities. 

First, we do not have a hierarchy of cities.  Rather, our cities are identical.  

More than one kind of good has to be introduced to obtain a hierarchy of cities. 

Second, the production function is assumed to remain the same over time (except 
for the possibility of labour augmenting technical change).  It might have been shifting 

to increase the benefits of bigger cities. 

Third, perfect mobility and malleability of capital is not a realistic assumption, 

and there are costs involved in building a new city, which tends to reduce the number of 

cities and hence to increase the size of a city. 

Fourth, there is a good reason to believe that a market economy has a very 

different growth path from the optimal one.  As shown in Chapter II, the market 

equilibrium is not unique and a city size greater than the optimum may well be an 

equilibrium. 
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Fifth, technical progress and capital accumulation in transportation sector has 

worked to reduce the cost of bigger cities. 
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