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1. Introduction

The purpose of this article is two-fold.  First, we estimate aggregate production

functions for metropolitan areas in Japan to derive the magnitudes of agglomeration

economies.  Second, we use the estimates of agglomeration economies to test if Japanese

cities, in particular, Tokyo, are too large.

A number of economists have estimated agglomeration economies for Japanese cities,

but their estimates are limited to manufacturing industries.1  Service industries have become

dominant in larger cities and focusing only on manufacturing industries may cause serious

biases.  Furthermore, they used either jurisdictional data or population density as a

surrogate for city size because data for metropolitan areas were not available.  Unlike in the

U.S. where data for Standard Metropolitan Statistical Areas are available, the Japanese

government provides data only for legal jurisdictions.  In this article, we construct our own

metropolitan data set to estimate the magnitudes of agglomeration economies for Japanese

cities.

Another focus of this paper is to examine whether cities in Japan are too large.

Currently, the Parliament is discussing a plan to move the capital out of Tokyo and the main

reason for this movement is the perception that the concentration of economic activities in

Tokyo is excessive.  It is certainly true that the population of the Tokyo metropolitan area

exceeds 30 million and congestion in commuter railways is almost unbearable.  However, it

is also true that Tokyo is very convenient for conducting businesses because almost everyone

a business-person wants to talk to is located in downtown Tokyo.  In order to check

whether Tokyo is too large or not, we have to compare the agglomeration economies with a
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variety of deglomeration economies such as longer commuting time and congestion

externalities.

It is well known in urban economics that the optimal city size satisfies the Henry

George Theorem.2  For example, if the only agglomeration forces are externalities among

firms in a city and the only deglomeration forces are commuting costs of workers who work

at the center of the city, then the optimal city size is achieved when the Pigouvian subsidy for

the agglomeration externalities equals the total differential urban rent.3  As argued in

Kanemoto (1980), however, there is no reason to believe that the optimal city size is attained

in equilibrium.  Because of difficulty in forming a new agglomeration, we have multiple

equilibria and furthermore the equilibrium city sizes tend to be too large.

Unfortunately, a direct test of the Henry George Theorem is very difficult because good

land rent data are not available and we have to rely on land price data instead.  The

conversion of land prices into land rents is bound to be inaccurate in Japan where the

price/rent ratio is extremely high and has fluctuated enormously.

Instead of testing the Henry George Theorem directly, we compute the ratio between

the total land value and the total Pigouvian subsidy for each metropolitan area and see if there

is a significant difference between different levels of hierarchy of cities.  Our hypothesis is

that cities form a hierarchical structure where Tokyo is the only city at the top.  Equilibrium

city sizes tend to be too large at each level of hierarchy.  Divergence from the optimal size

cannot differ much between cities at the same hierarchical level because otherwise utility

                                                                                                                                              

1 See Kawashima (1975), Nakamura (1985), and Tabuchi (1986), for example.

2 The Henry George Theorem is obtained by Arnott and Stiglitz (1979), Henderson (1977), and Kanemoto
(1980) among others.

3 The differential urban rent is the urban rent minus the rural rent at the edge of the city.
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levels differ significantly across cities and inter-city migration occurs.  The divergence from

the optimum could however be significantly different between different levels of hierarchy.

At a low level of hierarchy the divergence tends to be small because it is relatively easy to add

a new city when existing cities are too large.  At a higher level it becomes more difficult to

create a new city because larger agglomerations are more difficult to form.  We therefore

test if the divergence from the optimum is larger for larger cities, in particular, if the ratio

between the total land value and the total Pigouvian subsidy is significantly larger for Tokyo

than for other cities.

The organization of this paper is as follows.  In Section 2, we estimate aggregate

production functions for metropolitan areas to obtain quantitative estimates of agglomeration

economies.  In Section 3, we compare agglomeration economies with the total land value.

Section 4 summarizes the results in the paper and discusses possibilities for elaboration and

extension.

2. Estimation of Agglomeration Economies

In this section we estimate aggregate production functions for metropolitan areas in

Japan.  The first task is to define metropolitan areas.  For each of the metropolitan areas,

we construct data for capital and labor inputs, value added, and social overhead capital.

Using this data set, we estimate production functions for metropolitan areas to obtain

estimates of agglomeration economies.

2.1. The Definition of a Metropolitan Area

Because the Japanese government does not publish data for metropolitan areas unlike

in the United States where a variety of economic data are available for Standard Metropolitan

Statistical Areas (SMSAs).  Our first (laborious) task is to construct data for metropolitan
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areas.

Although there is no official definition of metropolitan areas, a number of researchers

have developed their own definitions.  As far as we know, there are three: the SMEA

(Standard Metropolitan Employment Area) by Hiroyuki Yamada and Kazuyuki Tokuoka, the

Functional Urban Core (FUC) by Tatsuhiko Kawashima, and the Integrated Metropolitan

Area (IMA) by Shogo Takeuchi.  We use the last one because it was readily available when

we started our research.

The IMAs are defined through the following iterative procedure.4

First, we combine a municipality (city, town, or village) with another if doing so

increases the ratio of internal employment (i.e., the proportion of residents in an urban area

who work within the area).  That is, if the ratio of internal employment in the combined area

is higher than those in the two municipalities, then we integrate the two municipalities to

form a new larger urban area.  This condition is checked for each municipality with its three

most closely related municipalities (i.e., three municipalities that employ largest numbers of

residents in the municipality).  If there are more than one municipality that satisfies the

condition, we choose the one with the highest internal employment ratio after integration.

A municipality whose internal employment ratio is higher than 90% is not, however,

integrated with another municipality.

This integration procedure is carried out for all municipalities, and the joins of all

combinations form urban areas.  This completes the first iteration, and we repeat the same

procedure starting with the newly defined urban areas.  The iteration stops when no more

new integration occurs.

                                                       

4 See Suzuki and Takeuchi (1994) for more detailed explanations of the IMA.
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The advantage of the IMA over other definitions that are similar to the SMSA in the

U.S. is that it captures the degree of integration in relative terms.  Because of this feature,

IMAs can be defined in areas with low population densities if there exist significant

commuting interactions between different municipalities.  Compared with SMEAs and

FUCs, IMAs tend to be larger.  For example, the population of the Tokyo metropolitan area

is 33,529,313 according to the IMA and 27,187,116 according to the SMEA in 1990.

2.2. Construction of IMA-based Data

In our estimation of agglomeration economies, we use cross-sectional data for IMAs in

1985.  Although more recent data are available, we choose this year in order to avoid

tumultuous changes in land prices in late 80’s and early 90’s.  The variables that we use are

production (i.e., value added), labor, private capital, and social overhead capital.  Among

these variables, only the labor force data (the number of workers at work place) are available

for each municipality.  Other data are available only at the prefecture level except for ten

major cities.5  We construct the IMA data from the prefectural data in the following manner.

First, the total production in each IMA is obtained by proportional allotment according

to employment shares in manufacturing and non-manufacturing sectors.  For example, take

an IMA (denoted by A) that does not contain any of the major 10 cities.  The numbers of

workers in manufacturing and non-manufacturing sectors in the IMA are respectively

N A( , )1  and N A( , )2 .  The prefecture (denoted by I ) that contains the IMA has

production (valued added), Y I j( , )  for j =1 2, , and employment, N I j( , )  for j =1 2, , for

manufacturing and non-manufacturing industries.  The total production in the IMA is then

                                                       

5 The ten major cities are Sapporo, Kawasaki, Yokohama, Nagoya, Kyoto, Osaka, Kobe, Hiroshima,
Kitakyushu, and Fukuoka.



− 7 −

( 1 ) Y A Y I j
N A j
N I jj

( ) ( , )
( , )

( , )
=

=
∑

1

2

.

If the IMA contains one of the 10 major cities which have their own production data, the

same proportional allotment procedure is applied to the part excluding the city.

Second, the private capital in each IMA is obtained by proportional allotment

according to production shares in manufacturing and non-manufacturing industries (instead

of employment shares).

Third, there are four types of social overhead capital and the allotment procedures

differ slightly among them.  The first type is social overhead capital for agriculture, forestry,

and fishery.  This type of social overhead capital is allocated according to the employment

shares in the agricultural sector.  The second type that represents the industrial

infrastructure is allocated according to the production shares in the manufacturing industry.

The third type is the capital stock in telecommunication and railway industries.  This type is

allocated according to total production (that includes both manufacturing and non-

manufacturing industries).  The fourth type is infrastructure for residents such as parks and

neighborhood streets.  This type is allocated according to population.

Sources of original data are

Number of workers at work place: 1985 Population Census

Population: 1985 Population Census

Production (Value Added) for manufacturing and non-manufacturing industries: Annual

Report on Prefecture Accounts

Private Capital Stock: Ohkawara et. al. (1985) (Estimated by the CRIEPI).

Social Overhead Capital: Ohkawara et. al. (1985) (Estimated by the CRIEPI).
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2.3. Production Functions with Agglomeration Economies

We estimate aggregate production functions for metropolitan areas to derive estimates

of the magnitudes of urban agglomeration economies.  An aggregate production function in

a city is written as Y F N K G= ( , , ) , where N, K, G, and Y are respectively the employment,

the private capital, the social overhead capital, and the total production (or value added) in a

metropolitan area.  We assume that in the absence of agglomeration economies the

production function exhibits constant returns to scale with respect to labor and capital inputs.

The degree of agglomeration economies can then be measured by the degree of increasing

returns to scale of the estimated production function.

This approach can be justified if we assume that technological externalities exist

between firms in a metropolitan area.  For example, suppose a firm in a city receives

external benefits from urban agglomeration, measured by the total employment N, and social

overhead capital G.  Assuming that the firm uses labor n and (private) capital k as inputs, we

can write its production function as f n k N G( , , , ) .  For expositional simplicity, we assume

that all firms are identical.  The total production in a metropolitan area is then

Y mf N m K m N G= ( / , / , , ) , where m is the number of firms in a metropolitan area.  Free

entry of firms guarantees that the size of an individual firm is determined such that the

production function of an individual firm f n k N G( , , , )  exhibits constant returns to scale with

respect to n and k.  This condition determines the number of firms m as a function of other

variables, m m N K G= *( , , ) .  The aggregate production function is then

( 2 ) F N K G m N K G f
N

m N K G
K

m N K G
N G( , , ) * ( , , ) (

* ( , , )
,

* ( , , )
, , )= .

This aggregate production function satisfies
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where subscripts denote partial derivatives and the second square bracket equals zero

because of the constant-returns-to-scale condition mentioned above.  The last term mf N

measures the marginal benefits of urban agglomeration economies.

The above model of technological externalities is attractive for its simplicity but as

argued by Kanemoto (1990) it is difficult to believe that non-market interactions between

firms are strong enough to create large metropolitan areas.  A number of papers, e.g.,

Kanemoto (1990) and Krugman (1991), proposed an alternative approach relying on

heterogeneity of final and/or intermediate products.  They showed that, if the heterogeneity

is combined with transportation and communication costs, agglomeration economies emerge

even in the absence of technological externalities.  Our aggregate production function may

be interpreted as being derived from such a model.  The normative properties of the

heterogeneous good models have not been fully investigated, however, and it is not clear if

our test for optimal city size in section 3 is valid also in these models.  We take up this issue

again in the conclusion section.

Although a variety of functional forms are possible for the urban production function,

we first start with a simple Cobb-Douglas type:

( 4 ) Y AK N G= α β γ .

Because we assume that an individual firm’s production function has constant returns

to scale with respect to labor and capital, the magnitude of urban agglomeration economies

can be measured by the degree of scale economy, α β+ − 1.

It turns out that in our estimation the coefficient for the social overhead capital γ  is
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either negative or statistically insignificant if we use the Cobb-Douglas production function.

We therefore try another form:

( 5 ) Y AK N N G= −α α γ1 ln .

In this formulation the degree of agglomeration economies, γ lnG , is increasing in the social

overhead capital.

2.4. Estimation Results

We first estimate the simple Cobb-Douglas production function,

( 6 ) ln( / ) ln( / ) ln ln( / )Y N A a K N a N a G N= + + +0 1 2 3 ,

where Y, K, N, and G are respectively the value added, private capital stock, employment,

and social overhead capital in an IMA.  The relationships between the estimated parameters

and coefficients in the Cobb-Douglas production function ( 4 ) are α = a1 ,

β = + − −a a a2 1 31 , γ = a3 .

Table 1 reports the estimation results for equation ( 6 ) for different size groups.  The

coefficient for the social overhead capital is significantly negative for small IMAs with less

than 200,000 residents and insignificant for larger size groups.  If these estimates were

correct, the marginal productivity of social overhead capital would be negative for small

cities and zero for medium to large cities.  It is however difficult to believe that the social

overhead capital has negative impacts on production.

Table 1  Estimates of a Cobb-Douglas Production Function with Social Overhead Capital
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Parameter All IMAs
(456)

Over 1 Mil.
(17)

0.4 - 1 Mil.
(34)

2-0.4 Mil.
(32)

Under 0.2 Mil.
(373)

A0 0.66 -0.69 0.62 -2.50 0.74

(6.47) (-1.54) (0.88) (-1.55) (5.89)

a1 0.57 0.72 0.25 0.58 0.60

(12.40) (6.30) (4.07) (6.68) (10.11)

a2 0.01 0.07 0.05 0.24 0.00

(3.08) (2.75) (0.96) (1.87) (0.06)

a3 -0.26 -0.05 -0.08 -0.02 -0.27

(-9.06) (-0.32) (-1.00) (-0.15) (-8.42)

R 2 0.40 0.81 0.45 0.63 0.29

Note: Numbers in parentheses in the second row are numbers of samples, and those in other
rows are t ratios.

Table 2  Estimates of a Cobb-Douglas Production Function without Social Overhead

Capital

Parameter All IMAs
(456)

Over 1 Mil.
(17)

0.4 - 1 Mil.
(34)

0.2-0.4 Mil.
(32)

Under 0.2 Mil.
(373)

A0 0.19 -0.77 0.19 -2.58 0.37

(1.95) (-2.13) (0.34) (-1.73) (2.91)

a1 0.49 0.72 0.25 0.59 0.47

(10.02) (6.53) (4.05) (6.81) (7.54)

a2 0.03 0.07 0.07 0.25 0.01

(6.60) (2.93) (1.58) (1.98) (1.69)

R 2 0.30 0.81 0.43 0.63 0.15

Note: Numbers in parentheses in the second row are numbers of samples, and those in other
rows are t ratios.

Because the coefficient for the social overhead capital is either insignificant or negative,

we omit the variable for the estimation of the Cobb-Douglas form.  The results are shown in

Table 2.  The coefficient in which we are most interested is a2 1= + −α β  which measures

the degree of increasing returns to scale in urban production.  Assuming that each firm’s
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production function exhibits constant returns to scale with respect to capital and labor inputs,

we interpret the scale economy of the urban aggregate production function as representing

agglomeration economies.

Table 2 shows that agglomeration economies are statistically significant for all size

groups although they are small in IMAs with population less than 200,000.  In this size

group doubling the city size increases production only by 1%.  In the two size groups of

over 400,000 inhabitants, the production increases are about 7%.  It is surprising that in the

medium size group (cities with 200,000 to 400,000 residents) agglomeration economies are

very large at about 25%.

Our result that the estimated coefficient for social overhead capital is negative in Table

1 may be due to non-linearity in the way in which social overhead capital works.  We

therefore estimate a modified Cobb-Douglas form ( 5 ).  In this form, productivity

improvements by social overhead capital get larger as the employment in the city increases.

Table 3 reports the estimation results for a logarithmic transformation of equation ( 5 ):

( 7 ) ln( / ) ln( / ) ln lnY N A a K N a N G= + +0 1 2 ,

where the parameters satisfy a1 = α  and a2 = γ .

The last row in Table 3 shows the degree of increasing returns to scale (with respect to

K and N).  Because of non-linearity, the degree depends on the size of the city.  The

numbers in Table 3 evaluate the degrees of scale economy at the size of Tokyo IMA.  The

degrees of scale economy are considerably smaller in Table 3 than those in Table 2.
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Table 3  Estimated Parameters for a Modified Cobb-Douglas Production Function

Parameter All IMAs
(456)

Over 1 Mil.
(17)

0.4 - 1 Mil.
(34)

0.2-0.4 Mil.
(32)

Under 0.2 Mil.
(373)

A0 0.31 -0.30 0.67 -0.95 0.42

(3.36) (-1.14) (1.99) (-1.16) (3.43)

a1 0.48 0.72 0.25 0.59 0.47

(9.87) (6.48) (4.09) (6.70) (7.52)

a2 0.0014 0.0022 0.0023 0.0081 0.0006

(6.89) (2.89) (1.21) (1.63) (1.61)

R 2 0.30 0.81 0.41 0.62 0.15

Scale
Economy

0.026 0.040 0.042 0.146 0.010

Note: Numbers in parentheses in the second row are numbers of samples, and those in other
rows are t ratios.

Another explanation for a negative coefficient for social overhead capital is that

infrastructure investment has been used for redistribution across regions.  That is, relatively

more investment has been allocated to rural regions whose average incomes are lower.

Because of this tendency, less productive cities have relatively more social overhead capital

and a simple cross-section regression yields a negative coefficient.  This can be interpreted

as an example of a simultaneous equation bias where the supply side of social overhead

capital is mixed up with the demand (or productivity) side.  We have tried to find

instrumental variables that remove the bias but so far we have not been successful.

3. A Test for Optimal City Sizes

Using the estimates of agglomeration economies obtained in the preceding section, we

examine whether or not the cities in Japan (especially Tokyo) are too large.



− 14 −

3.1. The Henry George Theorem for the Optimal City Size

The so-called Henry George Theorem obtained by a number of urban economists in

1970’s characterizes conditions for the optimal city size.6  Depending on the sources of

agglomeration economies and counteracting deglomeration economies, the theorem takes

different forms.  In all cases, however, the optimal city size is obtained when a certain

measure of agglomeration benefits equals the total differential urban rent in the city, where

the differential urban rent means the difference between land rent in an urban area and the

rural rent at the edge of the city.

In this paper we have assumed two potential sources for agglomeration economies, i.e.,

externalities between firms in a city and social overhead capital.  Deglomeration economies

are caused by scarcity of space in the sense that, as a city expands in size, the average

commuting distance increases.  If we assume that all residents are homogeneous, the

optimal city size that maximizes the utility level of a resident satisfies the following version of

the Henry George Theorem.

Let us first consider the estimates in Table 2 that ignore social overhead capital.  The

optimal city size then requires that the total differential urban rent in the city equal the total

Pigouvian subsidy that must be given to the sources of agglomeration economies.7  In our

formulation, an individual firm’s production function can be written as

f k n N Ak n N( , , ) = − + −α α α β1 1 ,

where k and n are respectively capital and labor inputs and N is the total work force in the

city which represents agglomeration economies.  Because the Pigouvian subsidy per

                                                       

6 For example, see Arnott and Stiglitz (1979), Henderson (1977), and Kanemoto (1980).

7 See Kanemoto (1980), Chapter 2.
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employer is m f N∂ ∂/ , the total Pigouvian subsidy in a city is

( 8 ) PS Nm f N Y= = + −∂ ∂ α β/ ( )1 ,

where m is the number of firms in the city that satisfies m N n= /  and Y is the total

production, Y AK N= α β .  The Henry George Theorem states that, if the city size is

optimal, the total Pigouvian subsidy equals the total differential urban rent in a city.

Furthermore, it is easy to show that the second order condition for the optimum implies that

the Pigouvian subsidy is smaller than the total differential rent if the city size exceeds the

optimum as shown in the following figure.  We may therefore conclude that the city is too

large if the total differential rent exceeds the total Pigouvian subsidy.

Next, let us introduce social overhead capital.  The condition for optimal city size

depends on the degree of publicness of social overhead capital.  In the case of a pure local

public good, all residents in a city can jointly consume it without suffering from congestion.

Most of the social overhead capital does involve considerable congestion and cannot be

regarded as a pure local public good.  If the social overhead capital is a pure local public

good, then applying an analysis similar to Chapter 3 of Kanemoto (1980) shows that the

agglomeration benefits that must be equated with the total differential urban rent are the sum

of the Pigouvian subsidy and the cost of the social overhead capital.  For impure local public

goods, the agglomeration benefits include only part of the costs of the goods.  In the

following, we consider two extreme cases, i.e., pure local public good and pure private good

cases.
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Figure 1  The total differential urban rent and the Pigouvian subsidy

NN*

Utility Level

Differential Urban Rent - Pigouvian Subsidy

The estimated equation in Table 3 may be interpreted as being derived from an

individual production function of the form f k n N G Ak n N G( , , , ) ln= −α α γ1 .  For this

equation the total Pigouvian subsidy in the city is

( 9 ) PS G Y= γ (ln ) .

We compare this with the total urban rent or the total urban rent minus the social overhead

capital.

Note that our definition of optimal city size can be interpreted in two ways.  One

interpretation is that it describes the result of maximizing the utility of residents in a particular

city with respect to its size.  The other interpretation is optimization with respect to the

number of homogeneous cities.  For example, if the population of a country is fixed and

everyone in the country lives in one of many homogeneous cities, then optimizing with

respect to the number of cities is equivalent to maximizing the utility of a city with respect to
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its population.8

3.2. A Hierarchy of Cities and a Test for Optimal City Sizes

In reality different cities have different mixtures of industries and serve different

functions.  If the cities form a hierarchy in which cities at a certain hierarchical level are

homogeneous, however, the above argument can be applied to cities at each level.  For

example, Tokyo is too large if having more than two cities at the top of the hierarchy

increases the welfare of residents.  The Henry George Theorem shows that this is true when

the total differential urban rent exceeds the total agglomeration benefits.

In theory the Henry George Theorem can be tested for each city, but a direct test is

very difficult because good land rent data are not available and we have to use land price data

instead.  In order to obtain the total differential urban rent from our land price data, we have

to make the following adjustments.  First, we must subtract development costs from the

land value to obtain the value of undeveloped urban land.  Second, we compute the total

land rent by multiplying this by an appropriate discount rate.  Third, we have to subtract the

rural rent from the total land rent to produce the total differential urban rent.  It is difficult

to obtain good estimates for the three key variables, i.e., land development costs, the

discount rate, and the rural rent.

The estimation of the discount rate is particularly difficult because the price-rent ratio

has been extremely high and has fluctuated enormously over time in Japan.  For example,

Table 4 shows that the ratio between the total land value and GNP in Japan moved up from

2.48 in 1970 to 5.35 in 1990 and then down to 4.01 in 1993.

                                                       

8 Strictly speaking, the fact that the number of cities must be an integer causes complications.



− 18 −

Because of the difficulty in converting land prices into land rents, we do not try to test

the Henry George Theorem directly.  What we do instead is to compute the ratio between

the total land value and the total Pigouvian subsidy for each metropolitan area and see if there

is a significant difference between different levels of hierarchy.  The following argument

shows that there is a good reason to believe that cities tend to be too big and that the

divergence from the optimum tends to be larger for cities at a higher level of hierarchy.

Table 4  The Ratio Between the Total Land Value and GNP in Japan

Year Land Value
(billion yen)

Land Value
GNP  

1970   181,531 2.48

1975   376,406 2.54

1980   705,793 2.88

1985 1,004,073 3.09

1990 2,338,239 5.35

1993 1,855,143 4.01

Source: National Income Accounts (Japan Economic Planning Agency).

As shown in Chapter 2 of Kanemoto (1980), the presence of agglomeration economies

tends to make the equilibrium city size too large.  This can be explained by taking a simple

case where the entire population is divided into homogeneous cities.  Consider a country

with homogeneous population where everyone lives in one of the cities.  The total

population is fixed at N  which is divided into m  cities of the same population size

N N m= / .  In equilibrium the utility level of a household is the same regardless of where it

resides.  The equilibrium utility level can then be written as a function of city size, u N( ) .

An example is depicted in Figure 2, where the optimal city size is attained at N * .
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Now, it is easy to see that we have multiple equilibria in this case.  The existence of

agglomeration economies means that a start-up city that is initially small may not be able to

achieve as high a utility level as existing large cities.  For example, suppose that each new

city must start at the population size of N min  in Figure 2.  Any population size between N *

and N max  can then be a stable equilibrium.

Figure 2  Optimal and Market City Sizes

N* N max
N min

u

u(N )

u
min

This can be seen as follows.  Between N *  and N max  the utility level declines as the

city size gets larger.  Starting from the situation where all cities have the same population,

consider a move of a resident from one city to another.  The city that lost this resident now

has a slightly smaller population than before and the utility of the residents rises because of

the move.  In contrast, the city into which the resident moved experiences a decline in the

utility level.  Because residents move from a city with a lower utility level to that with a
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higher utility level, the original equilibrium will be restored.  The only way to move to

another equilibrium is to start a new city.  However, until the population of a city exceeds

N max , a start-up city cannot compete with existing cities.  Thus, any city size between N *

and N max  can remain as an equilibrium.

As noted before, cities are not homogeneous.  If cities form a hierarchical structure

where those at each layer of hierarchy can be regarded as homogeneous, however, a similar

argument can be applied to cities in each hierarchical level to show that they tend to be too

large.  Because of multiplicity of equilibria, the difference between the actual and the

optimum city size depends on the history.  The range of possible divergence however

depends on the size of the start-up city.  With a hierarchical structure, a new city in a certain

hierarchy usually comes from a city at one level lower.  This means that it is relatively easy

to increase the number of cities at a lower level of hierarchy.  In contrast, it is extremely

difficult to add a new city at the highest level of hierarchy.  For example, the population of

the Tokyo IMA is close to 32 million whereas that of the Osaka IMA is less than 15 million.

It would be very difficult to move Osaka up to the level where it can compete with Tokyo at

the top of hierarchy.  Thus, we could conjecture that divergence from the optimal city size is

larger for larger cities.  Our main focus in this section is to check if this conjecture is true.

In particular we compute the ratios between the total land value (minus the total social

overhead capital) and the total Pigouvian subsidy for metropolitan areas at different levels of

hierarchy and see whether the ratio is larger for Tokyo than other metropolitan areas.

3.3. Construction of Total Land Value Data for IMAs

The construction of the total land value data for an IMA is as follows.

First, we assume that urban land consists of urban planning areas.  We therefore
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excludes areas outside urban planning areas in our calculation of total land values.  This also

means that we include urbanization control areas as well as urbanization promotion areas.

Although urban development is in principle prohibited there at the moment, development in

the future is expected in many of the places in the areas and it would be inappropriate to

exclude them from our calculation.

Second, the land price data that we use are Chika Koji (Public Announcement of Land

Prices by National Land Agency) for January 1st in 1985 and Todofuken Chika Chosa

(Prefectural Land Price Survey) for July 1st in 1984 and 1985.  In order to adjust for the

half year difference between the two data sets, we averaged data from the latter to produce

estimates for January 1st in 1985.9

Third, according to the urban planning law in Japan, an urban planning area is divided

into urbanization promotion areas and urbanization control areas.  The former is further

divided into eight (8) different land use areas: type 1 exclusive residential areas, type 2

exclusive residential areas, residential areas, neighborhood commercial areas, commercial

areas, semi-industrial areas, industrial areas, and exclusive industrial areas.  Because

industrial and exclusive industrial areas have very few samples, we combine them into one

type.  This gives us eight types of urban areas, i.e., urbanization control areas and seven

types of land use areas in urbanization promotion areas.  We compute the average land

prices separately for the eight types of urban areas in each municipality.  The total land value

for each land use category is the average land price multiplied by the total land area in the

category.  The total land value for a municipality is then obtained by summing land values

for all land use categories.

                                                       

9 For locations where 1984 data are not available, we used only the 1985 data.
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Fourth, for some municipalities we do not have land price data to compute the average

land prices.  In such a case we obtain land prices by estimating the following equation for

the metropolitan area.

( 10 ) ln P a a D bti ii
= + +

=∑0 1

7

where P, Di’s, and t are respectively land price, dummy variables for the types of urban land

except for the residential areas, and distance from the city center.

3.4. The Ratio Between the Total Land Value and the total Pigouvian Subsidy

We compare the total land value and the total Pigouvian subsidy in 17 IMAs that have

more than one million residents.  Table 5 presents the comparison in the Cobb-Douglas

case, i.e., equation ( 6 ) with the restriction of a3 0= .10  The total land value is very high

compared with the total Pigouvian subsidy in all cities.  On the average the ratio between

them is 145.4.  According to the Henry George Theorem, this must equal the ratio between

the total land value and the total differential urban rent.  If we further ignore development

costs and the rural rent, this ratio must equal the inverse of the user cost of capital.  The

user cost of capital would then equal 0.73%, which is extremely low.  This may indicate that

the city sizes are too large for most of the 17 cities.  Our estimates of land values are quite

crude, however, and substantially higher than the estimates by the Economic Planning

Agency as discussed in the next section.  Furthermore, the rent/value ratio is known to be

very small in Japan and the user cost of 0.73% may not be overly unrealistic.

Although the total land value in the Tokyo IMA is extremely large, the total Pigouvian

subsidy is also very large, and the ratio between them is slightly below the average for the 17

cities.  Our evidence therefore does not support the hypothesis that Tokyo is too large.  If
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Tokyo were too large, then many of the other cities would also be too large.  This

comparison is made in terms of ratios, however, and comparison in terms of absolute

magnitudes may give a completely different picture because Tokyo is more than twice as

large as the second largest metropolitan area.  For example, if the price/rent ratio is 120, the

total land rent minus the total Pigouvian subsidy is about 1,500 billion yen for Tokyo but

about 350 billion yen for Osaka.  In this case both Tokyo and Osaka are too large at the

current hierarchy but the difference from the optimum is much larger for Tokyo.  It may

then be desirable to move Osaka to the same level of hierarchy as Tokyo.

The land value/Pigouvian subsidy ratio is very high in Kyoto, Hiroshima, and

Hamamatsu.  This may be due to topographical reasons.  For example, Kyoto is in a basin

and the expansion of the city is limited by mountains.

Table 6 shows the results for the modified Cobb-Douglas case of equation ( 7 ).

Because the agglomeration economies are estimated to be much smaller in this case, the ratio

between the total land value and the total Pigouvian subsidy is substantially higher.  If the

social overhead capital is a private good, then we can use the ratio as an indicator for

divergence from the Henry George Theorem.  If we assume that the social overhead capital

is a pure local public good, we have to subtract the value of social overhead capital from the

total land value, but the ratio changes very little as indicated in the last column in Table 6.

As in Table 5, the ratio for Tokyo is lower than the average and there is no indication that

Tokyo is too large.

                                                                                                                                              

10 The total Pigouvian subsidy is computed from the production function estimated for 17 largest cities.
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Table 5  Total Land Values and Pigouvian Subsidies: the Cobb-Douglas Case

IMA
Land Value
(billion yen)

(a)

Pigouvian Subsidy
(billion yen)

(b)

(a)
(b) 

Population
(1985)

Tokyo 1,031,422 7,134 144.6 31,883,659

Osaka  402,241 3,005 133.9 14,463,666

Nagoya  241,461 1,791 134.9  7,406,962

Kyoto  121,256  569 212.9  3,203,076

Sapporo   33,703  336 100.4  2,110,113

Hiroshima   59,898  355 168.6  1,988,186

Fukuoka   34,730  351  99.0  1,928,487

Kitakyushu   46,798  335 139.8  1,848,793

Sendai   25,804  170 152.2  1,579,968

Maebashi   45,055  259 174.1  1,545,802

Yokkaichi   29,884  267 111.9  1,472,053

Okayama   40,196  302 133.0  1,462,123

Kurume   21,651  220  98.3  1,243,558

Shizuoka   33,721  207 162.7  1,207,611

Utsunomiya   36,961  223 165.8  1,177,367

Hamamatsu   46,522  204 228.1  1,087,420

Kumamoto   17,189  153 112.1  1,022,891

Average 145.4
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Table 6  Total Land Values and Pigouvian Subsidies: the Modified Cobb-Douglas Case

IMA Land Value
(billion yen)

(a)

Pigouvian
Subsidy

(billion yen)
(b)

(a)
(b) 

Land Value −
SOC

(billion yen)
(c)

(c)
(b) 

Tokyo 1,031,422 4,174 247.1 961,531 230.3

Osaka  402,241 1,665 241.6 372,684 223.8

Nagoya  241,461  951 253.9 225,992 237.7

Kyoto  21,256  285 426.1 115,347 405.3

Sapporo  33,703  173 194.3  26,536 153.0

Hiroshima  59,898  178 336.7  54,762 307.9

Fukuoka  34,730  172 202.0  30,711 178.6

Kitakyushu  46,798  164 285.5  43,014 262.4

Sendai  25,804   82 314.0  22,485 273.6

Maebashi  45,055  125 360.1  41,769 333.8

Yokkaichi  29,884  129 231.9  26,770 207.7

Okayama  40,196  149 269.9  36,293 243.7

Kurume  21,651  107 203.1  18,700 175.4

Shizuoka  33,721   98 343.0  31,223 317.6

Utsunomiya  36,961  106 348.5  34,403 324.4

Hamamatsu  46,522   96 482.9  44,204 458.8

Kumamoto  17,189   73 237.1  14,999 206.9

Average 292.8 267.1

4. Conclusion

The magnitudes of agglomeration economies are estimated from aggregate production

functions for metropolitan areas in Japan, and the estimates are used to test the hypothesis

that Tokyo is too large.  In the estimation of aggregate production functions our major

findings are as follows.

First, agglomeration economies are small for small cities but fairly large for cities with

population larger than 200,000.  Cities with population between 200,000 and 400,000 have
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especially large agglomeration economies: doubling the size of a city increases productivity

by about 25% in the Cobb-Douglas production function case.  The productivity increase is

about 7% for cities with more than 400,000 residents and about 1% for cities with less than

200,000 residents.

Second, in our cross-section estimation of a metropolitan production function, the

coefficient for social overhead capital is either statistically insignificant or negative.  We

therefore omit the variable in the estimation of the Cobb-Douglas production function.  We

have also estimated a modified Cobb-Douglas form in which the agglomeration effect

interacts with social overhead capital in a highly nonlinear manner.  Agglomeration effects

are substantially smaller in this case than in the simple Cobb-Douglas case.

Using the estimates for agglomeration economies, we have tested if the Henry George

Theorem for optimal city size is satisfied.  We found that the total land values are very high

compared with the total Pigouvian subsidies in all cities, but the ratio for Tokyo is slightly

below the average for 17 largest cities in Japan.  Thus, there is no evidence supporting the

hypothesis that Tokyo is too large.  Note however that this comparison is made in terms of

ratios.  Because Tokyo is much larger than other cities, the absolute difference between the

differential urban rent and the Pigouvian subsidy could be extremely large.

This article is a first attempt at an empirical test of the Henry George Theorem and

there is ample room for improvements.  Elaboration and extension in the following

directions would be useful.

First, our land value estimates are quite crude.  The Economic Planning Agency

publishes the total land value data, but because this data set is only at the prefectural level, we

cannot use it for our study on metropolitan areas.  Our land value estimates are directly

comparable with the EPA’s for a few prefectures that are entirely included in one of the
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IMAs.  In these prefectures our estimates are about three times as large as the EPA’s.  One

of the reasons for this difference is that we include publicly owned land (e.g., roads and

parks) in our calculation because there is no reason to exclude them in the Henry George

Theorem.  Publicly owned land is less than a half of the total urban land, however, and this

cannot explain all the differences.

Second, in our estimation of the Cobb-Douglas production function social overhead

capital tends to have a negative coefficient.  As noted before, the reason for this may be a

simultaneous equation bias caused by the fact that relatively poor regions get larger shares of

public infrastructure investment.  A simultaneous equation estimation may improve our

estimates.

Third, in our theoretical framework we simply assume that agglomeration economies

are technological externalities.  As shown by Kanemoto (1990) and Krugman (1991), a

heterogeneous good model can produce urban agglomeration if it is combined with

transportation and communication costs.  Kanemoto (1990) showed that in such a model

locational externalities emerge and Pigouvian subsidies are necessary to achieve the first best

outcome.  In a heterogeneous good model, however, producers are not expected to act as

price takers and second best issues that are caused by price distortions complicate the

analysis.  The extension of the Henry George Theorem to this second best situation is left

for the future.
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Figure Legends

Figure 1.  The total differential urban rent and the Pigouvian subsidy

Figure 2.  Optimal and Market City Sizes


